
Compiler Principles
Overview

Xiaoyuan Xie 谢晓园
xxie@whu.edu.cn

School of Computer Science E301

Basic Information

Type：Compulsory
Credit：3
Hours：54
Prerequisites：Programming Languages、
Discrete Mathematics、Data Structure、
Principles of Computer Organization、etc.

Type：Compulsory
Credit：3
Hours：54
Prerequisites：Programming Languages、
Discrete Mathematics、Data Structure、
Principles of Computer Organization、etc.

Type：Compulsory
Credit：3
Hours：54
Prerequisites：Programming Languages、
Discrete Mathematics、Data Structure、
Principles of Computer Organization、etc.

 Xiaoyuan Xie，Professor, School of Computer

Science E301

 xxie@whu.edu.cn

Teacher

Objectives

 Most important and fundamental course to CS students
 Master theoretical principles of compilers

 Chomsky language hierarchy, Type III, Type II, etc.
 Lexical analysis, top-down&bottom-up parsing, etc.
 Syntax-directed Translation
 Etc.

 Be able to build a compiler for a (simplified) language
 Know how to use compiler construction tools, such as

generators of scanners and parsers

Content Hours
1. Introduction 4
2. Lexical analysis 6
3. Context-free grammar 4
4. Top-down parsing 4
5. Bottom-up parsing 8
6. Syntax-directed translation 8
7. Intermediate representation 4
8. Intermediate code generation 6
9. Runtime environment 6
10. Code generation and optimization 4

Syllabus

 Lecture notes:
 http://xiaoyuanxie.github.io/Compilers/2018FallCSCompiler.html

 Textbook：
 Compilers: Principles, Techniques, and Tools (2nd Edition), Alfred V·Aho， Monica S·Lam，Ravi

Sethi，Jeffrey D·Ullman, Addison Wesley; 2nd edition (September 10, 2006)

 Other references：
 Coursera Course – Compiler, http://www. Coursera.org

 Stanford Course CS143 by Keith Schwarz, http://cs143.stanford.edu

 Parsing Techniques - A Practical Guide (Second Edition),

Dick Grune and Ceriel J.H. Jacobs, Springer

Materials

 Attendance: check every week (begin, end)

 Homework: every week

 Submission due: next Monday 12:00 (pm);

 No later than next Friday 17:00 (pm) --- with a punishment

 Assignments: 1-2 assignments

 Score:

 Final exam 60% + Homework & assignment & attendance 40%

Rules and Regulations

Lecture 1: Introduction
Compiler in a Nutshell

Xiaoyuan Xie 谢晓园
xxie@whu.edu.cn

School of Computer Science E301

 How do we communicate with computer?

 Ages before Siri / CS professionals
 Programming languages are used to instruct computers

Motivation question

 Long long ago…

How to Instruct a Computer?

 Problem:
 Not readable by human

 Programmer Productivity --- Programming expensive; 50% of
costs for machines went into programming

 Expensive to modify (e.g. insert an instruction)

 Extremely difficult to debug

 Programming bit-by-bit doesn’t scale

 Solution:

 Instruct the computer at a higher level of abstraction --- a higher-

level programming language

How to Instruct a Computer?

 Example

How to Instruct a Computer?

Foot Soldier

President

My poll ratings are low,
lets invade a small nation

General

Cross the river and take
defensive positions

Sergeant

Forward march, turn left
Stop!, Shoot

 High-level Candidature --- Natural language
 Powerful in abstraction，but ambiguous

 Same expression describes many possible actions

 Programming languages
 high abstraction

 precision (avoid ambiguity)

 conciseness

 expressiveness

 modularity

High-level languages

Programming Languages

Programming
Language

How many

 Statistics

More than 2500 PL now. every 2 weeks, a new PL is born since
1954 http://oreilly.com/news/graphics/prog_lang_poster.pdf.
More than 2500 PL now. every 2 weeks, a new PL is born since
1954 http://oreilly.com/news/graphics/prog_lang_poster.pdf.

Hello World Collection http://www.roesler-ac.de/wolfram/hello.htm
收集了428 个不同语言写的``Hello World'' 程序.
Hello World Collection http://www.roesler-ac.de/wolfram/hello.htm
收集了428 个不同语言写的``Hello World'' 程序.

 A programming language is a set of rules that

provides a way of telling a computer what operations

to perform.

 It provides a linguistic framework for describing

computations

What is a Programming Languages

 English is a natural language. It has words, symbols

and grammatical rules.

 A programming language also has words, symbols

and rules of grammar.

 The grammatical rules are called syntax.

 Each programming language has a different set of syntax rules.

What is a Programming Language

Levels of Programming Languages

High-level program
class Triangle {

...
float surface()

return b*h/2;
}

Low-level program
LOAD r1,b
LOAD r2,h
MUL r1,r2
DIV r1,#2
RET

Executable Machine code 00010010010001010
01001001110110010
101101001...

 First Generation Languages

 Second Generation Languages

 Third Generation Languages

 Fourth Generation Languages

 Fifth Generation Languages

Generations

 Machine language

 Operation code – such as addition or subtraction.

 Operands – that identify the data to be processed.

 Machine language is machine dependent as it is the only

language the computer can understand.

 Very efficient code but very difficult to write.

First Generation Languages

 Assembly languages

 Symbolic operation codes replaced binary operation codes.

 Assembly language programs needed to be “assembled” for

execution by the computer. Assembly language instructions will

translated into machine language instructions.

 Very efficient code and easier to write.

Second Generation Languages

 Closer to English but included simple mathematical

notation.

 Programs are written in source code, and must be translated into

machine language programs (called object code).

 The translation of source code to object code is accomplished by

a machine language system program called a compiler.

 FORTRAN、COBOL、C and C++、Visual Basic

Third Generation Languages

 A high level language that requires fewer instructions
to accomplish a task than a third generation language

 Used with databases
 Query languages
 Report generators
 Forms designers
 Application generators

Fourth Generation Languages

 Declarative languages

 Functional: Lisp, Scheme, SML

 Also called applicative

 Everything is a function

 Logic: Prolog

 Based on mathematical logic

 Rule- or Constraint-based

Fifth Generation Languages

Language Family Tree

 Imperative Programming --- compiler

 Procedure: Fortran, ALGOL, COBOL and BASIC, Pascal and C

 Object-Oriented Programming (C++, Java)

 Declarative Programming

 Logic: Prolog

 Functional/Applicative Programming (Lisp)

The principal paradigms

 Procedure programming languages

 Sequences of instructions

 First, second and some third generation languages

 Object-oriented programming languages

 Objects are created rather than sequences of instructions

 Some third generation, and fourth and fifth generation languages

Programming Languages

 FORTRAN

 FORmula TRANslation.

 Developed at IBM in the mid-1950s.

 Designed for scientific and mathematical applications by

scientists and engineers.

Traditional Programming Languages

 COBOL

 COmmon Business Oriented Language.

 Developed in 1959.

 Designed to be common to many different computers.

 Typically used for business applications.

Traditional Programming Languages (cont’d.)

 BASIC

 Beginner’s All-purpose Symbolic Instruction Code.

 Developed at Dartmouth College in mid 1960s.

 Developed as a simple language for students to write programs

with which they could interact through terminals.

Traditional Programming Languages (cont’d.)

 C

 Developed by Bell Laboratories in the early 1970s.

 Provides control and efficiency of assembly language while

having third generation language features.

 Often used for system programs.

 UNIX is written in C.

Traditional Programming Languages (cont’d.)

 Simula

 First object-oriented language

 Developed by Ole Johan Dahl in the 1960s.

 Smalltalk

 First purely object-oriented language.

 Developed by Xerox in mid-1970s.

 Still in use on some computers.

Object-Oriented Programming Languages

 C++

 It is C language with additional features.

 Widely used for developing system and application software.

 Graphical user interfaces can be developed easily with visual

programming tools.

Object-Oriented Programming Languages (cont’d.)

 JAVA
 An object-oriented language similar to C++ that eliminates lots of

C++’s problematic features
 Allows a web page developer to create programs for applications,

called applets that can be used through a browser.
 Objective of JAVA developers is that it be machine, platform and

operating system independent.

Object-Oriented Programming Languages (cont’d.)

 Scripting Languages
 JavaScript and VBScript
 Php and ASP
 Perl and Python

 Command Languages
 sh, csh, bash

 Text processing Languages
 LaTex, PostScript

Special Programming Languages

 HTML

 HyperText Markup Language.

 Used on the Internet and the World Wide Web (WWW).

 Web page developer puts brief codes called tags in the page to

indicate how the page should be formatted.

Special Programming Languages
(cont’d.)

 XML

 Extensible Markup Language.

 A language for defining other languages.

Special Programming Languages (cont’d.)

(Variable) Type system

 Dynamically typed language
 Types of values are checked during execution
 A poorly typed operation might cause the program to halt or

otherwise signal an error at run time.

 Statically typed language
 Types of variables are checked before being executed, and a program

might be rejected before it starts.
 Type errors are grammar errors, and are reported by compilers.

 Strong typed allows Explicit type conversion
 There are no loopholes in the type system

 Weak typed allows Implicit type conversion
 Type system can be subverted (invalidating any guarantees)

Overview of Compiler

Overview of
Compiler

 Translation involves:
 Read and understand the program

 Precisely determine what actions it require

 Figure-out how to faithfully carry-out those actions

 Instruct the computer to carry out those actions

Compiler’s major task

CompilerCompiler Assembly
Language

Translation

Assembly
Language

Translation

Program
written

in a
Programming

Languages

Program
written

in a
Programming

Languages

Source: High-level Target: Low-level

 Example

Compiler’s major task

CompilerCompiler

 Input：Standard imperative language (C, C++)
 State

 Variables,
 Structures,
 Arrays

 Computation
 Expressions (arithmetic, logical, etc.)
 Assignment statements
 Control flow (conditionals, loops)
 Procedures

Compiler’s major task

 Output: target program
 State

 Registers
 Memory with Flat Address Space

 Machine code – load/store architecture
 Load, store instructions
 Arithmetic, logical operations on registers
 Branch instructions

Compiler’s major task

 “Compilation”

Translation of a program written in a source language into a

semantically equivalent program written in a target language

Compiler

Error messages

Source
Program

Target
Program

Input

Output

Compiler v.s. Interpreter

 “Interpretation”

Performing the operations implied by the source program

Interpreter

Source
Program

Input

Output

Error messages

Compiler v.s. Interpreter

Java Source
（.java）

Java Byte Code
（.class）

Java Compiler

Class Loader
Byte Code Verifier

Hardware

Java
Interpreter

Java just
in time compiler

Java byte codes
move locally or
through network

Compile Time
Environment

Runtime Environment(Java
Platform)

Java Virtual Machine

Java
Class

Libraries

 Java

Compiler v.s. Interpreter

 Accompanies of a compiler
 Editor is the environment where you can type-in your source code, sometimes

with highlights, automatic matching, or intelligent completion.

 Preprocessor provides the first pass of compilation. It processes include-files,

conditional compilation instructions and macros, delete comments, etc.

 Assembler performs the third stage of compilation. It takes the assembly source

code and produces an assembly listing with offsets. The assembler output is stored

in an object file.

 Linker performs the final stage of compilation. It takes one or more object files or

libraries as input and combines them to produce a single (usually executable) file.

 Loader loads the executable code into the memory.

A complete compiler

Skeletal Source Program

Preprocessor

Compiler Target Assembly
Program

Assembler

Relocatable Machine Code

Loader/Linker

Absolute Machine Code
Editor

Source Program

Overall process

Construction of Compiler

Construction
of Compiler

Construction

Analysis Synthesis

Lexical analysis

 Lexical analysis / scanning
 The lexical analyzer reads the stream of characters making up the source

program and separates it into meaningful sequences called lexemes

 Based on the lexemes, we construct tokens:

 A token: < token- name, attribute-value >

 Tokens have value and type: < keyword, if>, <identifier, x>, <operator, +=>, etc…

 Is the atomic entity for compilation process

 token- name will e used in the syntax analysis

 attribute-value points to the corresponding item in symbol table，will be used in sematic

analysis and code generation

 Every programming language has its own lexical regulations.

Lexical analysis

Lexical Analyzer (Scanner)

Token Stream: <id,1> <=, > <id, 2> <+, > <id,3> <*, > <number, 4>

Program (character stream):
position = initial + rate * 60

Error：18..23 + val#ue

Not a number

Variable names cannot have ‘#’ character

Syntax analysis

 Syntax analysis/parsing

 Parsing will check whether the sentence is legal, by building a tree

 Parsing = Diagramming Sentences，where the diagram is a tree

 The parser uses the first components of the tokens produced by

the lexical analyzer to create a tree-like intermediate representation

that depicts the grammatical structure of the token stream --- if we

can build a tree, it is legal

I cat sky interesting

A = a ++ b

Diagramming a Sentence into a Syntax Tree/Parse tree:
A hierarchical structure x = y + 2 * z

=

x +

y *

2 z

Abstract Syntax Tree (is a
compressed representation
of parse tree)

Assignment statement
Parse Tree

id = exp

x
exp op

exp

+
id

y

exp

num

2

op

*

exp

id

z

exp

Syntax analysis

• What is the basis for syntax analysis?

• Specification - Formal grammars

- Chomsky hierarchy – context-free grammars

- Each rule is called a production

goal expr
expr  expr op term |

term
term  number | id
op  + | -
…

Syntax analysis

• Rules of language --- grammar

Given a grammar, we can derive sentences by repeated substitution
e.g. subj + verb + obj + prep-phrase: I play basketball in the playground

Parsing is the reverse process – given a sentence, find out how it was
derived from the grammar

goal expr
expr  expr op term

| term
term  number

| id
op  +

| -

Syntax analysis

Diagram is called a parse tree or syntax tree

Syntax analysis

Syntax analysis

Lexical Analyzer (Scanner)

Token Stream

Program (character stream)

Syntax Analyzer (Parser)

Parse Tree

int * foo(i, j, k))
int i;
int j;

{
for(i=0; i j) {
fi(i>j)

return j;
}

Extra parentheses

Missing increment

Not an expression

Not a keyword

Errors

Semantic analysis

 Once sentence structure is understood, we can try to

understand “meaning”

 Formally check the program against a specification, e.g. static checking, compile-

time type checking, field checking, coercions, variable bindings

I eat cat in the sky

 Programming languages define strict rules to avoid

ambiguities

 What does this code print? Why?

{
int i = 3;

{
int i = 4;
System.out.print(i);

}
}

Semantic analysis

Where are we now?

• Front end

- Produces fully-checked AST

- Problem: AST still represents source-level semantics

 High-level IR (e.g. AST)
 Closer to source code

 Hides implementation details

 Low-level IR (e.g. three-address code)
 Closer to the machine

 Exposes details (registers, instructions, etc)

 Many tradeoffs in IR design

 Most compilers have 1 or maybe 2 IRs:
 Typically closer to low-level IR

 Better for optimization and code generation

Intermediate Representations

Code Optimization

• The machine-independent code-optimization phase attempts to
improve the intermediate code so that better target code will result.
Usually better means faster, but other objectives may be desired,
such as shorter code, or target code that consumes less power.

• Series of passes – often repeated
– Reduce cost

– Run faster

– Use less memory

– Conserve some other resource, like power

• Must preserve program semantics

• Typical optimizations

• Dead-code elimination, common sub-expression elimination, loop-
invariant code motion, strength reduction

• Often contain assumptions about performance tradeoffs of the
underlying machine

• Relative speed of arithmetic operations – plus versus times

• Possible parallelism in CPU

• Cost of memory versus computation

• Size of various caches

Code Optimization

Where are we ?

• Optimization output

• Transformed program

• Typically, same level of abstraction

Back End

• Responsibilities

• Map abstract instructions to real machine
architecture

• Allocate storage for variables in registers

• Schedule instructions (often to exploit
parallelism)

• Finally, output the target code

Identifier Class Type Value/Address …

rate variable Integer relative at 8 hex …

compare Procedure 1 integer param Absolute at 1000 hex …

Symbol-Table Management

• A symbol table is a data structure containing a record for each identifier,
with fields for the attributes of the identifier.

• Record the identifiers used in the source program and collect information
about various attributes of each identifier, such as its type, its scope

• Shared by later phases

Error Detection and Reporting

• The syntax and semantic analysis phases usually handle a large fraction of
the errors detectable by the compiler

• Exception handling

A complete example

Implementation of
Compiler

Implementation
of Compiler

 Requirements
 Correct

 The actions requested by the program has to be faithfully
executed

 Efficient
 Intelligently and efficiently use the available resources to carry

out the requests

 (the word optimization is used loosely in the compiler
community – Optimizing compilers are never optimal)

Implementation

 Software development tools are available to implement one
or more compiler phases
 Scanner generators

 Parser generators

 Syntax-directed translation engines

 Automatic code generators

 Data-flow engines

Compiler-Construction Tools

72

课后作业

 Textbook, Page 3: 1.1.2, 1.1.3, 1.1.4

 List some famous tools for constructing compilers,
with brief introduction and comparison.

