Lecture 2: Lexical Analysis

xxie@whu.edu.cn School of Computer Science E301

Where We Are

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

A motivation example

while (ip < z)
++ip;</pre>

2018/9/8

h

W

i

1

e

i

(

P

What do we want to do?

<

while (ip < z)

++ip;

5

i

P

;

+

n + +

Z

T_While

-tra

2018/9/8

16

This is straightforward

The piece of the original program from which we made the token is called a **lexeme**.

This is called a **token**. You can think of it as an enumerated type representing what logical entity we read out of the source code.

How to decide the type?

T While

<

1

3

7

Sometimes we will discard a lexeme rather than storing it for later use. Here, we ignore whitespace, since it has no bearing on the meaning of the program.

i

n + +

i

T While

1

e

h

W

i

;

+

T_While

th.

T_While

2018/9/8

28

T_While

*

Some tokens can have attributes that store extra information about the token. Here we store which integer is represented.

Goals of Lexical Analysis

- Convert from physical description of a program into sequence of **tokens**.
 - Each token represents one logical piece of the source file – a keyword, the name of a variable, etc.
- Each token is associated with a lexeme.
- Each token may have optional attributes.
- Extra information derived from the text perhaps a numeric value.
- The token sequence will be used in the parser to recover the program structure.

Interaction of the Lexical Analyzer with the Parser

What is a token

What is a token?

- A token should indicate a syntactic category of a lexeme
 - In English: noun, verb, adjective, ...
 - In a programming language: identifier, Integer, Keyword, Whitespace, ...

What is a token?

- A token corresponds to sets of strings (a type/category/class)
 - Identifier: strings of letters or digits, starting with a letter
 - Integer: a non-empty string of digits
 - Keyword: "else" or "if" or "begin" or ...
 - Whitespace: a non-empty sequence of blanks, newlines, and tabs

What are tokens for?

- Classify program substrings according to their roles
- Output of lexical analysis is a stream of tokens
- Parser relies on token distinctions
 - E.g. an identifier is treated differently from a keyword

Lexemes and Tokens

- Tokens give a way to categorize lexemes by what information they provide.
- Some tokens might be associated with only a single lexeme:

 Tokens for keywords like if and while probably only match those lexemes exactly.

- Some tokens might be associated with lots of different lexemes
 - All variable names, all possible numbers, all possible strings, etc.

Strings are infinite

We need a method to describe the infinite strings with finite rules

Describe infinite strings with finite rules

- First, we define finite categories/types of tokens
 - Keywords, number, identifier, operator, etc.
- Secondly, we use finite rules to describe each type of token

How?

Formalisms of tokens

Regular languages

- Regular languages are used to define the category/type of a token in finite rules
- Three ways to describe a regular language
 - Grammar, Regular Expression, Finite Automaton
 - Equivalent to each other

Any grammar can be regarded as a generating device: derive infinite set of strings (i.e. language)

Formally define Languages

- An *alphabet* table Σ is a finite set of symbols (characters)
- A string s is a finite sequence of symbols from $\boldsymbol{\Sigma}$
 - |s| denotes the length of string s
 - ε denotes the empty string, thus $|\varepsilon| = 0$
- A language is a specific set of strings over some fixed alphabet Σ (a subset of all possible strings)

Examples of languages

Type-III: Alphabet = English characters Language = English words

Not every string of English characters is an English word!

Type-II: Alphabet = English characters Language = English sentences

Not every string of English characters is an English word!

Examples of languages

```
Type-III:
Alphabet = ASCII
Language = C tokens
```

Not every string of ASCII characters is a C token!

Type-II: Alphabet = ASCII Language = C programs

Not every string of ASCII characters is a C program!

Examples of languages

Alphabet = English characters Language = English words

Not every string of English characters is an English word!

Alphabet = ASCII Language = C programs

Regular language is (Type-III) language

- --- regular expression
- --- finite automaton

Regular Expression

Finite Automaton

Regular Expression

Finite Automaton

Regular Expressions

- Regular expressions are a family of descriptions that can be used to capture certain languages (i.e. the regular languages).
- Often provide a compact and human- readable description of the language.
- Used as the basis for numerous software systems,
 e.g. flex, antlr.

Identifier: strings of letters or digits, starting with a letter letter = 'A' $| \dots |$ 'Z' | 'a' $| \dots |$ 'z' identifier = letter (letter | digit)*

Atomic Regular Expressions

- The regular expressions we will use in this course begin with two simple building blocks.
 - The symbol ε is a regular expression matches the empty string.
 - For any symbol **a**, the symbol **a** is a regular expression that just matches **a**.

Compound Regular Expressions

- 1. If R_1 and R_2 are regular expressions, R_1R_2 is a regular expression represents the **concatenation** of the languages of R_1 and R_2 .
- 2. If R_1 and R_2 are regular expressions, $R_1 \mid R_2$ is a regular expression representing the **union** of R_1 and R_2 .
- 3. If R is a regular expression, R* is a regular expression for the **Kleene closure** of R, that is to repeat R for 0-n times
- 4. If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

Regular expression operator precedence is

(R)

R*

 R_1R_2 $R_1|R_2$

So ab*c|d is parsed as ((a(b*))c)|d

Algebraic Laws for Regular Expression

LAW	DESCRIPTION
r s = s r	is commutative
r (s t) = (r s) t	is associate
r(st) = (rs)t	Concatenation is associate
r(s t) = rs rt; (s t)r = sr tr	Concatenation distributes over
$\varepsilon r = r\varepsilon = r$	ε is the identity for concatenation
r* = (r ε)*	ε is guaranteed in a closure
r** = r*	* is idempotent

Regular Expression v.s. Regular Language

 Regular expression can represent a set of strings, which form a regular language

Let $\Sigma = \{a, b\}$

The regular expression a I b denotes the language {a, b}.

(alb)(alb) denotes {aa, ab, ba, bb}, the language of all strings of length two over the alphabet. Another regular expression for the same language is aa I ab I ba I bb.

a* denotes the language consisting of all strings of zero or more a's, that is, { ϵ , a, aa, aaa, ... }.

Regular Expression v.s. Regular Language

Let $\Sigma = \{a, b\}$

(alb)* denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a's and b's: {E, a, b, aa, ab, ba, bb, aaa, ... }.
Another regular expression for the same language is (a* b *)*.

a I a* b denotes the language {a, b, ab, aab, aaab, ... }, that is, the string a and all strings consisting of zero or more a's and ending in b.

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

(0|1)(0|1)(0|1)(0|1)

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

(0|1)(0|1)(0|1)(0|1)

0000

1010

1111

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

(0|1)(0|1)(0|1)(0|1)

0000

1010

1111

(0|1){4}

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length
 exactly four:

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at
- most one zero:

1*(0 | ε)1* 1*0?1* 11110111 111111 0111 0

Applied Regular Expressions

- Suppose our alphabet is **a**, **@**, and **.**, where **a** represents "some letter."
- A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa*(.aa*)*
a+ (. a⁺)* @ a+ .a⁺ (.a+) *
a+ (. a⁺)* @ a+ . (. a+)+

abc@whu.edu.cn

Applied Regular Expressions

+1370

-3248

-9999912

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8) (+|-)?[0123456789]*[02468] (+|-)?[0-9]*[02468] 42

More examples

Keyword: "else" or "if" or "begin" or ... 'else' | 'if' | 'begin' | . . .

Integer: a non-empty string of digits digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' integer = digit digit* Abbreviation: $A^+ = AA^*$

Identifier: strings of letters or digits, starting with a letter letter = 'A' | . . . | 'Z' | 'a' | . . . |'z' identifier = letter (letter | digit)* *Is (letter** | *digit*) the same?*

Regular Expression

Finite Automaton
Implementing Regular Expressions

- Regular expressions can be implemented using finite automata.
 - Regular expressions = specification
 - Finite automata = implementation
- There are two main kinds of finite automata:
 - NFAs (nondeterministic finite automata), which we'll see in a second, and
 - DFAs (deterministic finite automata), which we'll see later.

Finite Automatons

- A finite automaton is a 5-tuple $(S, \Sigma, \delta, s_0, F)$
 - A set of states S --- nodes
 - An input alphabet Σ
 - A transition function $\delta(S_i, a) = S_i$
 - A start state S₀
 - A set of accepting states $F \subseteq S$

 A, B, C, \dots, Z

The automaton takes a string as input and decide whether to accept or reject the string.

 A, B, C, \dots, Z

 "HEYA

A, B, C, ..., Z

A, B, C, ..., Z

The double circle indicates that this state is an accepting state. The automaton accepts string if it ends in an accepting state.

Finite Automatons

- Input: a string
- Output: accept if the scanning of input string reaches its EOF and the FA reaches an accepting state; reject otherwise

Strings accepted by an FA

- An FA accepts an input string x iff there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a *move*
- The language defined by an FA is the set of input strings it accepts, such as (a|b)*abb for the example NFA

(a|b)*abb

aa*|bb*

A More Complex Automaton

"1010": accept

"101": reject

A More Complex Automaton

12.	3	7	5
-----	---	---	---

Finite Automata

- Finite automata is a recognizer
- Given an input string, they simply say "yes" or "no" about each possible input string

- Definition: an NFA is a 5-tuple (S,Σ,δ,s₀,F) where
 - S is a finite set of states
 - $-\Sigma$ is a finite set of *input symbol alphabet*
 - δ is a mapping from S× Σ U {ε} to a set of states
 - $-S_0 \subseteq S$ is the set of *start states*
 - $-F \subseteq S$ is the set of accepting (or final) states

- Transition Graph
 - Node: State
 - Non-terminal state: (S_i)
 Terminal state: (S_k)
 - Starting state: -
 - **Edge:** state transition $f(S_i,a)=S_j$

 $=S_{j} \quad \underbrace{S_{i}}^{a} \xrightarrow{a} \underbrace{S_{j}}^{a}$

Transition Graph

 An NFA can be diagrammatically represented by a labeled directed graph called a *transition* graph

• Transit table

- Line: State
 - Starting state: in general, the first line, or label "+";
 - Terminal state: "*" or "-";
- Column: All symbols in $\boldsymbol{\Sigma}$
- Cell: state transition mapping

Transition Table

- The mapping δ of an NFA can be represented in a transition table

편이 가지 못했다. 알려져 갈려져 있던 아파는 것이가 잘 알려져 있는 것이다. 한 것이 같이 나라			승규는 전쟁에서는 가운데, 아름이지,
$\delta(0,a) = \{0,1\}$	State	Input a	Input b
$\delta(0,\mathbf{b}) = \{0\}$	0	{0,1}	{0}
$\delta(1,b) = \{2\}$	1		{2}
$O(2,D) = \{3\}$	2		{3}

NFA Example 2

Transition Table

STATE	a	b	ε
0	$\{0,1\}$	{0}	Ø
1	Ø	{2}	Ø
2	Ø	{3}	Ø
3	Ø	Ø	Ø

Acceptance of input strings

S3

 S1+
 {S1}
 {S2}

 S2
 {S3}
 {S3}

 S3 {S3}
 {S3}

- Definition: an DFA is a 5-tuple (S,Σ,δ,s_0,F) , is a special case of NFA
 - There are no moves on input ε , and
 - For each state s and input symbol a, there is exactly one edge out of s labeled a.

f (S2, b)= S3

- DFA M=({S0, S1, S2, S3}, {a,b}, f, S0, {S3}), :
 f (S0, a)=S1
 f (S2, a)=S1
 - f (S0, b)=S2
 - f (S1, a)= S3 f (S1, b)= S2 f (S3, a)= S3

• For example, DFA M=($\{0,1,2,3,4\},\{a,b\},\delta,\{0\},\{3\}$)

•
$$\delta(0, a) = 1$$
 $\delta(0, b) = 4$
 $\delta(1, a) = 4$ $\delta(1, b) = 2$
 $\delta(2, a) = 3$ $\delta(2, b) = 4$
 $\delta(3, a) = 3$ $\delta(3, b) = 3$
 $\delta(4, a) = 4$ $\delta(4, b) = 4$

		CONTRACTOR OF	Contraction of the second
		а	b
100	0+	1	4
11.2	1	4	2
	2	3	4
12	3⁻	3	3
	4	4	4

a

b

		а	b
	0+	1	
\rightarrow	1		2
	2	3	
	3-	3	3

	а	b
0+	1	T
1	1	2
2	3	Т
3-	3	3

∑: {a, b, c, d} S: {S0, S1, S2, S3} Start: S0 Terminal: {S3} f: {(S0,a)→ S1, (S0,c)→S2, (S0,d)→S3, (S1,b)→S1, (S1,d)→S2, (S2,a)→S3, (S3, c)→S3}

NFA v.s. DFA

2018/9/8

NFA v.s. DFA

	DFA	NFA
Initial	Single starting state	A set of starting states
ε dege	Not allowed	Allowed
$\delta(S, a)$	S' or \perp	{S1,, Sn} or \perp
Implementation	Deterministic	Nondeterministic

- DFA accepts an input string with only one path
- NFA accepts an input string with possibly multiple paths
Construct DFA from NFA

- Construct DFA from NFA
 - For any NFA, there exists an equivalent DFA
 - Idea of construction: eliminate the uncertainty
 - Merge N states in NFA into one single state
 - Eliminate ε $4 \xrightarrow{\varepsilon} 5$

4, 5

Eliminate multiple mapping

Construct DFA from NFA

- INPUT: An NFA N.
- **OUTPUT**: A DFA D accepting the same language as N.
- METHOD: The algorithm constructs a transition table Dtran for D. Each state of D is a set of NFA states, and we construct Dtran so D will simulate "in parallel" all possible moves N can make on a given input string.

OPERATION	DESCRIPTION	
ϵ -closure(s)	Set of NFA states reachable from NFA state s on ϵ -transitions alone.	
ϵ -closure(T)	Set of NFA states reachable from some NFA state s in set T on ϵ -transitions alone; = $\bigcup_{s \text{ in } T} \epsilon$ -closure(s).	
move(T, a) Set of NFA states to which there is a transit input symbol a from some state s in T.		

ε-closure and move Examples

111

The Subset Construction Algorithm

- NFAs can be in many states at once, while DFAs can only be in a single state at a time.
- Key idea: Make the DFA simulate the NFA.
- Have the states of the DFA correspond to the sets of states of the NFA.
- Transitions between states of DFA correspond to transitions between sets of states in the NFA.

The Subset Construction Algorithm

```
 \begin{array}{l} \mbox{initially, $\epsilon$-closure($s_0$) is the only state in $D$states, and it is unmarked;} \\ \mbox{while ( there is an unmarked state $T$ in $D$states ) { \\ mark $T$;} \\ \mbox{for ( each input symbol $a$ ) { \\ $U = $\epsilon$-closure($move($T, $a$));} \\ \mbox{if ( $U$ is not in $D$states ) \\ $add $U$ as an unmarked state to $D$states; \\ $D$tran[$T, $a$] = $U$; \\ $ \\ } \end{array}
```


Dtran[A,a]= ϵ -closure(move(A,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}, Let B=Dtran[A,a] Dtran[A,b]= ϵ -closure(move(A,b))= ϵ -closure({5})={1,2,4,6,7}, Let C=Dtran[A,b]

Dtran[B,a]= ϵ -closure(move(B,a))= ϵ closure({3,8})={1,2,3,4,6,7,8}=B Dtran[B,b]= ϵ -closure(move(B,b))= ϵ closure({5,9})={1,2,4,5,6,7,9}, Let D=Dtran[B,b]

 $Dtran[C,a]=\epsilon$ -closure(move(C,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[C,b]= ϵ -closure(move(C,b))= ϵ -closure({5})={1,2,4,6,7}=C

Dtran[E,a]= ϵ -closure(move(E,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[E,b]= ϵ -closure(move(E,b))= ϵ -closure({5})={1,2,4,6,7}=C

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	В	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

Homework-W2

Homework – week 2

- pp.125, Exercise 3.3.2 (a)(c), 3.3.5 (a)(e)
- pp.151-152, Exercise 3.6.3, Exercise 3.6.4
- pp.152, Exercise 3.6.5
- pp. 166, Exercise 3.7.1 (b)