
Lecture 2: Lexical Analysis

Xiaoyuan Xie 谢晓园
xxie@whu.edu.cn

School of Computer Science E301

2018/9/8 2

Where We A re

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Machine
Code

2018/9/8 3

A motivation example

while (ip < z)
++ip;

2018/9/8 4

What do we want to do?

+

while (ip < z)
++ip;

w h i l e (i p < z) \n\t + + i p ;

2018/9/8 5

What do we want to do?

+

(ip < z)
++ip;

while

w h i l e (i p < z) \n\t + + i p ;

T_While (T_Ident < T_Ident) ++ T_Ident

ip z ip

2018/9/8 6

What do we want to do?

do[for] = new 0;

d o [f o r] = n e w 0 ;

2018/9/8 7

What do we want to do?

2018/9/8 8

T_Do [T_For T_New T_IntConst

0

] =

do[for] = new 0;

d o [f o r] = n e w 0 ;

What do we want to do?

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 9

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 10

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 11

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 12

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 13

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 14

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 15

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 16

T_While

Scan and partition input string
into substrings (i.e. tokens)

w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 17

T_While

The piece of the original program
from which we made the token is
called a lexeme.

This is called a token. You can
think of it as an enumerated type
representing what logical entity
we read out of the source code.

Scan and partition input string
into substrings (i.e. tokens)

This is straightforward

How to decide the type?

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 18

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 19

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 20

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 21

T_While

program.

Sometimes we will discard a
lexeme rather than storing it for
later use. Here, we ignore
whitespace, since it has no
bearing on the meaning of the
program.

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 22

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 23

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 24

T_While

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 25

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 26

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 27

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 28

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 29

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 30

T_While (

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 31

T_While (

137

T_IntConst

Scan and partition input string
into substrings (i.e. tokens)

+w h i l e (1 3 7 < i) \n\t + + i ;

2018/9/8 32

T_While (

137

T_IntConst

Some tokens can have

represented.

Some tokens can have
attributes that store
extra information about
the token. Here we store
which integer is
represented.

Scan and partition input string
into substrings (i.e. tokens)

2018/9/8 33

Goals of Lex ical Analysis

• Convert from physical description of a program into

sequence of tokens.

• Each token represents one logical piece of the

source file – a keyword, the name of a variable, etc.

• Each token is associated with a lexeme.

• Each token may have optional attributes.

• Extra information derived from the text – perhaps a

numeric value.

• The token sequence will be used in the parser to recover

the program structure.

2018/9/8 34

Lexical
Analyzer

Parser
Source

Program

Token,
tokenval

Symbol Table

Get next
token

error error

Interaction of the Lexical
Analyzer with the Parser

2018/9/8 35

What is a token

What is a token?

• A token should indicate a syntactic

category of a lexeme
• In English: noun, verb, adjective, …

• In a programming language: identifier,

Integer, Keyword, Whitespace, …

Attributes of tokens

Lexical analyzer

<id, “y”> <assign, > <num, 31> <+, > <num, 28> <*, > <id, “x”>

y := 31 + 28*x

Parser

token

tokenval
(token attribute)

What is a token?

• A token corresponds to sets of strings (a

type/category/class)
• Identifier: strings of letters or digits, starting

with a letter

• Integer: a non-empty string of digits

• Keyword: “else” or “if” or “begin” or …

• Whitespace: a non-empty sequence of

blanks, newlines, and tabs

What are tokens for?

• Classify program substrings according to their

roles

• Output of lexical analysis is a stream of tokens

• Parser relies on token distinctions

• E.g. an identifier is treated differently from

a keyword

2018/9/8 40

Lexemes and Tokens

• Tokens give a way to categorize lexemes by
what information they provide.

• Some tokens might be associated with only a
single lexeme:
- Tokens for keywords like if and while

probably only match those lexemes exactly.

• Some tokens might be associated with lots of
different lexemes
- All variable names, all possible numbers, all

possible strings, etc.

2018/9/8 41

Strings are infinite

We need a method to describe the
infinite strings with finite rules

string
(arbitrary)

Token
(type)

Lexical analyzer

2018/9/8 42

Describe infinite strings with
finite rules

• First, we define finite categories/types of

tokens

• Keywords, number, identifier, operator, etc.

• Secondly, we use finite rules to describe

each type of token

How?

2018/9/8 43

Formalisms of tokens

2018/9/8 44

Regular languages

• Regular languages are used to define the

category/type of a token in finite rules

• Three ways to describe a regular language

• Grammar, Regular Expression, Finite Automaton

• Equivalent to each other

Any grammar can be regarded as
a generating device: derive infinite
set of strings (i.e. language)

2018/9/8 45

Formally def ine Languages

• An alphabet table  is a finite set of symbols
(characters)

• A string s is a finite sequence of symbols
from 

• |s| denotes the length of string s

•  denotes the empty string, thus || = 0

• A language is a specific set of strings over
some fixed alphabet  (a subset of all
possible strings)

2018/9/8 46

Examples of languages

Type-III:
Alphabet = English characters
Language = English words
Not every string of English characters is an English word!

Type-II:
Alphabet = English characters
Language = English sentences

Not every string of English characters is an English word!

2018/9/8 47

Examples of languages

Type-III:
Alphabet = ASCII
Language = C tokens
Not every string of ASCII characters is a C token!

Type-II:
Alphabet = ASCII
Language = C programs

Not every string of ASCII characters is a C program!

2018/9/8 48

Examples of languages

Alphabet = English characters
Language = English words

Alphabet = ASCII
Language = C programs

Not every string of English characters is an English word!

Regular language is (Type-III) language
--- regular expression
--- finite automaton

Regular Expression

Finite Automaton

2018/9/8 49

Regular Expression

Finite Automaton

2018/9/8 50

2018/9/8 51

Regular Exp ressions

• Regular expressions are a family of descriptions
that can be used to capture certain languages (i.e.
the regular languages).

• Often provide a compact and human- readable
description of the language.

• Used as the basis for numerous software systems,
e.g. flex, antlr.

Identifier: strings of letters or digits, starting with a letter
letter = ‘A’ | . . . | ‘Z’ | ‘a’ | . . . |‘z’
identifier = letter (letter | digit)*

2018/9/8 52

Atomic Regular Exp ressions

• The regular expressions we will use in this
course begin with two simple building blocks.

• The symbol ε is a regular expression
matches the empty string.

• For any symbol a, the symbol a is a
regular expression that just matches a.

2018/9/8 53

Compound Regular Exp ressions

1. If R1 and R2 are regular expressions, R1R2 is a regular
expression represents the concatenation of the languages of
R1 and R2.

2. If R1 and R2 are regular expressions, R1 | R2 is a regular
expression representing the union of R1and R2 .

3. If R is a regular expression, R* is a regular expression for the
Kleene closure of R, that is to repeat R for 0-n times

4. If R is a regular expression, (R) is a regular expression with
the same meaning as R.

2018/9/8 54

Oper ator Precedence

• Regular expression operator precedence is

(R)

R*

R1R2

R1| R2

• So ab*c|d is parsed as ((a(b*))c)|d

2018/9/8 55

Algebraic Laws for Regular Expression

LAW DESCRIPTION
r|s = s|r | is commutative

r|(s|t) = (r|s)|t | is associate
r(st) = (rs)t Concatenation is associate

r(s|t) = rs|rt; (s|t)r = sr|tr Concatenation distributes over |
εr = rε = r ε is the identity for concatenation
r* = (r|ε)* ε is guaranteed in a closure

r** = r* * is idempotent

2018/9/8 56

Regular Exp ression v.s. Regular
Language

• Regular expression can represent a set of strings,
which form a regular language

Let = {a, b}

The regular expression a l b denotes the language {a, b} .

(alb)(alb) denotes {aa, ab, ba, bb} , the language of all strings of length two
over the alphabet.
Another regular expression for the same language is
aa l ab l ba l bb.

a* denotes the language consisting of all strings of zero or more a's, that
is, {ε, a, aa, aaa, ... }.

2018/9/8 57

Regular Exp ression v.s. Regular
Language

Let = {a, b}

denotes the set of all strings consisting of zero or more instances
of a or b, that is, all strings of a's and b's: {E, a, b, aa, ab, ba, bb, aaa, ... }.
Another regular expression for the same language is (a* b *)*.

(a I b) *

denotes the language {a, b, ab, aab, aaab, ... }, that is, the string a and
all strings consisting of zero or more a's and ending in b.

a l a* b

2018/9/8 58

Sample Regular Exp ressions

(0 | 1)*00(0 | 1)*

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings containing 00
as a substring:

2018/9/8 59

(0 | 1)*00(0 | 1)*

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings containing 00
as a substring:

Sample Regular Exp ressions

2018/9/8 60

11011100101
0000

11111011110011111

(0 | 1)*00(0 | 1)*

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings containing 00
as a substring:

Sample Regular Exp ressions

2018/9/8 61

11011100101
0000

11111011110011111

(0 | 1)*00(0 | 1)*

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings containing 00
as a substring:

Sample Regular Exp ressions

2018/9/8 62

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 63

(0|1)(0|1)(0|1)(0|1)

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 64

(0|1)(0|1)(0|1)(0|1)

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 65

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 66

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 67

(0|1){4}

0000
1010
1111
1000

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings of length
exactly four:

Sample Regular Exp ressions

2018/9/8 68

• Suppose the only characters are 0 and 1.

• Here is a regular expression for strings that contain at

most one zero:

1*(0 | ε)1*1*(0 | ε)1*

11110111
111111
0111

0

11110111
111111
0111

0

1*0?1*

Sample Regular Exp ressions

2018/9/8 69

Applied Regular Expressions

• Suppose our alphabet is a, @, and ., where a
represents “some letter.”

• A regular expression for email addresses is

aa* (.aa*)* @ aa*.aa*(.aa*)*

abc@whu.edu.cn

aa* (.aa*)* @ aa*.aa*(.aa*)*

a+ (. a+)* @ a+ .a+ (.a+) *

a+ (. a+)* @ a+ . (. a+)+

2018/9/8 70

Applied Regular Expressions

• Suppose that our alphabet is all ASCII
characters.

• A regular expression for even numbers is

(+|-)?(0|1|2|3|4|5|6|7|8|9)*(0|2|4|6|8)

42
+1370
-3248

-9999912

42
+1370
-3248

-9999912

(+|-)?[0123456789]*[02468]

(+|-)?[0-9]*[02468]

2018/9/8

Keyword: “else” or “if” or “begin” or …
‘else’ | ‘if’ | ‘begin’ | . . .

More examples

Integer: a non-empty string of digits
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
integer = digit digit*
Abbreviation: A+ = AA*

Identifier: strings of letters or digits, starting with a letter
letter = ‘A’ | . . . | ‘Z’ | ‘a’ | . . . |‘z’
identifier = letter (letter | digit)*

Is (letter* | digit*) the same?

Regular Expression

Finite Automaton

2018/9/8 72

2018/9/8 73

Implement ing Regular Expressions

• Regular expressions can be implemented
using finite automata.

• Regular expressions = specification
• Finite automata = implementation

• There are two main kinds of finite
automata:

• NFAs (nondeterministic finite automata),
which we'll see in a second, and

• DFAs (deterministic finite automata), which
we'll see later.

2018/9/8 74

Fini te Automatons

• A finite automaton is a 5-tuple (S,,,s0,F)
• A set of states S --- nodes
• An input alphabet Σ
• A transition function (Si, a)=Sj

• A start state S0

• A set of accepting states F S

2018/9/8 75

A Simp le Automaton

Transition diagrams have a collection
of nodes or circles, called states.

" "start

A,B,C,...,Z

2018/9/8 76

A Simp le Automaton

Arrows are called transitions. The
automaton changes which state(s) it is
in by following transitions.

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 77

A Simp le Automaton

" "start

A,B,C,...,Z

The automaton takes a string as
input and decide whether to
accept or reject the string.

" H E Y A "

2018/9/8 78

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 79

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 80

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 81

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 82

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 83

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 84

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 85

A Simp le Automaton

" "start

A,B,C,...,Z

" H E Y A "

2018/9/8 86

A Simp le Automaton

" "start

A,B,C,...,Z

The double circle
indicates that this
state is an
accepting state.
The automaton
accepts string if it
ends in an
accepting state.

2018/9/8 87

Fini te Automatons

• Input: a string
• Output：accept if the scanning of input

string reaches its EOF and the FA reaches
an accepting state; reject otherwise

1 0 1 1 0 …

状态控制器
Head

Input string
Output

FA

88

Strings accepted by an FA

• An FA accepts an input string x iff there is some path
with edges labeled with symbols from x in sequence
from the start state to some accepting state in the
transition graph

• A state transition from one state to another on the path
is called a move

• The language defined by an FA is the set of input
strings it accepts, such as (a|b)*abb for the example
NFA

2018/9/8 89

(a|b)*abb

aa*|bb*

Strings accepted by an FA

2018/9/8 90

A M ore Complex Autom aton

“1010”: accept

“101”: reject

2018/9/8 91

A M ore Complex Autom aton

h i 1 2 3

2018/9/8 92

A M ore Complex Autom aton

1 2 . 3 7 5

2018/9/8 93

Finite Automata

• Finite automata is a recognizer

• Given an input string, they simply say "yes" or
"no" about each possible input string

94

Nondeterministic Finite Automata
(NFA)

• Definition: an NFA is a 5-tuple (S,,,s0,F)
where
– S is a finite set of states

–  is a finite set of input symbol alphabet

–  is a mapping from S Σ U {ε} to a set of
states

– S0  S is the set of start states

– F  S is the set of accepting (or final) states

• Transition Graph

Node：State

– Non-terminal state:

– Terminal state:

– Starting state：

Edge：state transition

S0

Si

Sk

Si Sjf(Si,a)=Sj
a

Nondeterministic Finite Automata
(NFA)

96

Transition Graph

• An NFA can be diagrammatically represented
by a labeled directed graph called a transition
graph

0start a
1 32

ε b

a

b

S = {0,1,2,3}
 = {a,b}
s0 = 0
F = {3}

• Transit table
– Line：State

• Starting state：in general, the first line，or label “+”；

• Terminal state: “*” or “-” ；

– Column：All symbols in 
– Cell：state transition mapping

Nondeterministic Finite Automata
(NFA)

98

Transition Table

• The mapping  of an NFA can be represented
in a transition table

State
Input
a

Input
b

0 {0,1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}

2018/9/8 99

NFA Example 2

Transition Table

Acceptance of input strings

NFA Example 3

S0
a

S2

S3



a





b

b

S1

a b 

S0+ {S1,S3} {S2}

S1+ {S1} {S2}

S2 {S3}

S3- {S3}

101

Deterministic Finite Automata
(DFA)

• Definition: an DFA is a 5-tuple
(S,,,s0,F), is a special case of NFA

– There are no moves on input , and

– For each state s and input symbol a, there
is exactly one edge out of s labeled a.

• DFA M=({S0, S1, S2, S3}, {a,b}, f, S0, {S3}), ：
f (S0, a)=S1 f (S2, a)=S1

f (S0, b)=S2 f (S2, b)= S3

f (S1, a)= S3 f (S3, a)= S3

f (S1, b)= S2 f (S3, b)= S3

S1

S0

S2

S3

a
a

b a

b

a

b

,b

Deterministic Finite Automata
(DFA)

• For example, DFA M=({0,1,2,3,4},{a,b}, ,{0},{3})
• (0, a) = 1  (0, b) = 4
 (1, a) = 4  (1, b) = 2
 (2, a) = 3  (2, b) = 4
(3, a) = 3  (3, b) = 3
 (4, a) = 4  (4, b) = 4

a b

0+ 1 4

1 4 2

2 3 4

3- 3 3

4 4 4

Deterministic Finite Automata
(DFA)

a b

0+ 1 4

1 4 2

2 3 4

3- 3 3

4 4 4

0 21 3a

b
a b

a

b

b a

4
ab

Deterministic Finite Automata
(DFA)

a b

0+ 1 

1  2

2 3 

3- 3 3

0 21 3a

a

b

b a

a b

0+ 1

1 2

2 3

3- 3 3

Deterministic Finite Automata
(DFA)

: {a, b, c, d}

S: {S0, S1, S2, S3}

Start: S0

Terminal: {S3}

f: {(S0,a) S1, (S0,c)S2,

(S0,d)S3, (S1,b)S1,

(S1,d)S2, (S2,a)S3,

(S3, c)S3}

S0 a S1

S2

S3

c

d

d

a

b

c

Deterministic Finite Automata
(DFA)

NFA v.s. DFA

2018/9/8 107

DFA NFA

Initial Single starting state A set of starting states

 dege Not allowed Allowed

 (S, a) S’ or ⊥ {S1, …, Sn} or ⊥

Implementation Deterministic Nondeterministic

NFA v.s. DFA

• DFA accepts an input string with only one path

• NFA accepts an input string with possibly multiple paths

• Construct DFA from NFA

– For any NFA, there exists an equivalent DFA

– Idea of construction: eliminate the uncertainty

– Merge N states in NFA into one single state
• Eliminate 
• Eliminate multiple mapping

Construct DFA from NFA

1

2

3

a

a 1 2,3
a

4 5


4，5

• INPUT: An NFA N.

• OUTPUT: A DFA D accepting the same language as N.

• METHOD: The algorithm constructs a transition table

Dtran for D. Each state of D is a set of NFA states, and we

construct Dtran so D will simulate “in parallel” all possible

moves N can make on a given input string.

Construct DFA from NFA

111

-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) = 

0

1

3

7

2

4

7

7 8

a ba a none

Also used to simulate NFAs

• NFAs can be in many states at once, while
DFAs can only be in a single state at a time.

• Key idea: Make the DFA simulate the NFA.

• Have the states of the DFA correspond to the
sets of states of the NFA.

• Transitions between states of DFA correspond
to transitions between sets of states in the NFA.

The Subset Construction Algorithm

113

The Subset Construction Algorithm

First，Initial state of NFA is ε-closure(0)，
i.e. A={0，1，2，4，7}，  = {a,b}
First，Initial state of NFA is ε-closure(0)，
i.e. A={0，1，2，4，7}，  = {a,b}

Dtran[A,a]=ε-closure(move(A,a))=ε-closure({3,8})={1,2,3,4,6,7,8},
Let B=Dtran[A,a]
Dtran[A,b]=ε-closure(move(A,b))=ε-closure({5})={1,2,4,6,7},
Let C=Dtran[A,b]

Dtran[A,a]=ε-closure(move(A,a))=ε-closure({3,8})={1,2,3,4,6,7,8},
Let B=Dtran[A,a]
Dtran[A,b]=ε-closure(move(A,b))=ε-closure({5})={1,2,4,6,7},
Let C=Dtran[A,b]

Subset Construction Example 1

r=(a|b)*abb

Dtran[B,a]=ε-closure(move(B,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[B,b]=ε-closure(move(B,b))=ε-
closure({5,9})={1,2,4,5,6,7,9},
Let D=Dtran[B,b]

Dtran[B,a]=ε-closure(move(B,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[B,b]=ε-closure(move(B,b))=ε-
closure({5,9})={1,2,4,5,6,7,9},
Let D=Dtran[B,b]

Subset Construction Example 1

r=(a|b)*abb

Dtran[C,a]=ε-closure(move(C,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[C,b]=ε-closure(move(C,b))=ε-closure({5})={1,2,4,6,7}=C
Dtran[C,a]=ε-closure(move(C,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[C,b]=ε-closure(move(C,b))=ε-closure({5})={1,2,4,6,7}=C

Dtran[D,a]=ε-closure(move(D,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[D,b]=ε-closure(move(D,b))=ε-
closure({5,10})={1,2,4,5,6,7,10},
Let E=Dtran[D,b]

Dtran[D,a]=ε-closure(move(D,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[D,b]=ε-closure(move(D,b))=ε-
closure({5,10})={1,2,4,5,6,7,10},
Let E=Dtran[D,b]

Dtran[E,a]=ε-closure(move(E,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[E,b]=ε-closure(move(E,b))=ε-closure({5})={1,2,4,6,7}=C
Dtran[E,a]=ε-closure(move(E,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[E,b]=ε-closure(move(E,b))=ε-closure({5})={1,2,4,6,7}=C

Subset Construction Example 1

r=(a|b)*abb

Subset Construction Example 1

2018/9/8 118

Homework-W2

2018/9/8 119

• pp.125, Exercise 3.3.2 (a)(c), 3.3.5 (a)(e)
• pp.151-152, Exercise 3.6.3, Exercise 3.6.4
• pp.152, Exercise 3.6.5
• pp. 166, Exercise 3.7.1 (b)

Homework – week 2

