Lecture 2：Lexical Analysis

Xiaoyuan Xie 谢晓园
xxie＠，whu．edu．cn
School of Computer Science E301

Where We Are

Lexical AnalysisSyntax Analysis
Semantic Analysis
IR Generation
IR Optimization
Code Generation
Optimization

A motivation example

What do we want to do?

```
while (ip < z)
++ip;
```


What do we want to do?


```
while (ip < z)
++ip;
```


What do we want to do?

$$
\begin{gathered}
\text { while (ip < z) } \\
++i p ;
\end{gathered}
$$

What do we want to do?

What do we want to do?

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i

T_While

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i

How to decide the type?

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

[^0]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

[^1]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

[^2]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	i

```
T While
```

```
Sometimes we will discard a
lexeme rather than storing it for
later use. Here, we ignore
whitespace, since it has no
bearing on the meaning of the
program.
```


Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

[^3]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

[^4]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

[^5]
Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

T_While (

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

T_While (

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

T_While (

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

T_While (

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i)	$\backslash n$	t	+	+	i

T_While (

Scan and partition input string into substrings (i.e. tokens)

T_While (

Scan and partition input string into substrings (i.e. tokens)

w	h	i	l	e		$($	1	3	7		$<$		i	$)$	$\backslash n$	$\backslash t$	+	+	i	;

T_While	T_IntConst	
		137

Scan and partition input string into substrings (i.e. tokens)

T_While	T_IntConst	
		137

Some tokens can have
attributes that store
extra information about
the token. Here we store
which integer is
remresented.

Goals of Lexical Analysis

- Convert from physical description of a program into sequence of tokens.
- Each token represents one logical piece of the source file - a keyword, the name of a variable, etc.
- Each token is associated with a lexeme.
- Each token may have optional attributes.
- Extra information derived from the text - perhaps a numeric value.
- The token sequence will be used in the parser to recover the program structure.

Interaction of the Lexical Analyzer with the Parser

What is a token

What is a token?

- A token should indicate a syntactic category of a lexeme
- In English: noun, verb, adjective, ...
- In a programming language: identifier, Integer, Keyword, Whitespace, ...

Attributes of tokens

What is a token?

- A token corresponds to sets of strings (a type/category/class)
- Identifier: strings of letters or digits, starting with a letter
- Integer: a non-empty string of digits
- Keyword: "else" or "if" or "begin" or ...
- Whitespace: a non-empty sequence of blanks, newlines, and tabs

What are tokens for?

- Classify program substrings according to their roles
- Output of lexical analysis is a stream of tokens
- Parser relies on token distinctions
- E.g. an identifier is treated differently from a keyword

Lexemes and Tokens

- Tokens give a way to categorize lexemes by what information they provide.
- Some tokens might be associated with only a single lexeme:
- Tokens for keywords like if and while probably only match those lexemes exactly.
- Some tokens might be associated with lots of different lexemes
- All variable names, all possible numbers, all possible strings, etc.

Strings are infinite

We need a method to describe the infinite strings with finite rules

Describe infinite strings with finite rules

- First, we define finite categories/types of tokens
- Keywords, number, identifier, operator, etc.
- Secondly, we use finite rules to describe each type of token

> How?

Formalisms of tokens

Regular languages

- Regular languages are used to define the category/type of a token in finite rules
- Three ways to describe a regular language
- Grammar, Regular Expression, Finite Automaton
- Equivalent to each other

Any grammar can be regarded as a generating device: derive infinite set of strings (i.e. language)

Formally define Languages

- An alphabet table Σ is a finite set of symbols (characters)
- A string s is a finite sequence of symbols from Σ
- $|s|$ denotes the length of string s
- ε denotes the empty string, thus $|\varepsilon|=0$
- A language is a specific set of strings over some fixed alphabet Σ (a subset of all possible strings)

Examples of languages

Type-III:
Alphabet = English characters
Language = English words
Not every string of English characters is an English word!

Type-II:
Alphabet = English characters
Language = English sentences
Not every string of English characters is an English word!

Examples of languages

Type-III:
Alphabet = ASCII
Language $=\mathrm{C}$ tokens
Not every string of ASCII characters is a C token!

Type-II:
Alphabet = ASCII
Language $=$ C programs
Not every string of ASCII characters is a C program!

Examples of languages

Alphabet $=$ English characters
Language = English words
Not every string of English characters is an English word!
Alphabet = ASCII
Language = C programs
Regular language is (Type-III) language
--- regular expression
--- finite automaton

Regular Expression

Finite Automaton

Regular Expression

Finite Automaton

Regular Expressions

- Regular expressions are a family of descriptions that can be used to capture certain languages (i.e. the regular languages).
- Often provide a compact and human- readable description of the language.
- Used as the basis for numerous software systems, e.g. flex, antlr.

Identifier: strings of letters or digits, starting with a letter letter = 'A' | . . . |'Z' |'a' | . . . |'z' identifier $=$ letter (letter | digit)* ${ }^{*}$

Atomic Regular Expressions

- The regular expressions we will use in this course begin with two simple building blocks.
- The symbol $\boldsymbol{\varepsilon}$ is a regular expression matches the empty string.
- For any symbol \mathbf{a}, the symbol \mathbf{a} is a regular expression that just matches a.

Compound Regular Expressions

1. If R_{1} and R_{2} are regular expressions, $\mathbf{R}_{1} \mathbf{R}_{2}$ is a regular expression represents the concatenation of the languages of R_{1} and R_{2}.
2. If R_{1} and R_{2} are regular expressions, $\mathbf{R}_{1} \mid \mathbf{R}_{2}$ is a regular expression representing the union of R_{1} and R_{2}.
3. If \mathbf{R} is a regular expression, \mathbf{R}^{*} is a regular expression for the Kleene closure of R, that is to repeat R for $0-n$ times
4. If R is a regular expression, (R) is a regular expression with the same meaning as R.

Operator Precedence

- Regular expression operator precedence is

$$
\begin{gathered}
(R) \\
R^{*} \\
R_{1} R_{2} \\
R_{1} \mid R_{2}
\end{gathered}
$$

- So $\mathbf{a b *} \mathbf{c} \mid \mathbf{d}$ is parsed as $\left(\left(\mathbf{a}\left(\mathbf{b}^{*}\right)\right) \mathbf{c}\right) \mid \mathbf{d}$

Algebraic Laws for Regular Expression

LAW

DESCRIPTION

$r\|s=s\| r$	\mid is commutative
$r\|(s \mid t)=(r \mid s)\| t$	\mid is associate
$r(s t)=(r s) t$	Concatenation is associate
$r(s \mid t)=r s\|r t ;(s \mid t) r=s r\| t r$	Concatenation distributes over \|
$\varepsilon r=r \varepsilon=r$	ε is the identity for concatenation
$r^{*}=(r \mid \varepsilon)^{*}$	ε is guaranteed in a closure
$r^{* *}=r^{*}$	$*$ is idempotent

Regular Expression v.s. Regular Language

- Regular expression can represent a set of strings, which form a regular language

Let $\Sigma=\{a, b\}$
The regular expression $a \mid b$ denotes the language $\{a, b\}$.
(alb)(alb) denotes $\{a \mathrm{a}, \mathrm{ab}, \mathrm{ba}, \mathrm{bb}\}$, the language of all strings of length two over the alphabet.
Another regular expression for the same language is aal abl bal bb.
a* denotes the language consisting of all strings of zero or more a's, that is, $\{\varepsilon, a, a a, ~ a a a, \ldots\}$.

Regular Expression v.s. Regular Language

Let $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
($\mathrm{a} \mid \mathrm{b}$) * denotes the set of all strings consisting of zero or more instances of a or b, that is, all strings of a's and b's: $\{E, a, b, a a, a b, b a, b b, a a a, \ldots\}$. Another regular expression for the same language is (a* $\left.\mathrm{b}^{*}\right)^{*}$.
$a \mid a * b$ denotes the language $\{a, b, a b, a a b, a a a b, \ldots\}$, that is, the string a and all strings consisting of zero or more a's and ending in b.

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

$(0 \mid 1)^{*} 00(0 \mid 1)^{*}$

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

$(0 \mid 1) * 00(0 \mid 1) *$

11011100101
0000
11111011110011111

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings containing 00 as a substring:

(0 | 1)*00(0 | 1)*

11011100101
0000
11111011110011111

Sample Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

Sample Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

(0|1)(0이)(0이)(이1)

Sample Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

(이1)(0|1)(0|1)(0|1)

Sample Regular Expressions

- Suppose the only characters are 0 and 1 .
- Here is a regular expression for strings of length exactly four:

(0|1)(0|1)(0|1)(0|1)

0000
1010
1111
1000

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0이)(0이)(0이)(이1)

0000
1010
1111
1000

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings of length exactly four:

(0|1)\{4\}

0000
1010
1111
1000

Sample Regular Expressions

- Suppose the only characters are 0 and 1.
- Here is a regular expression for strings that contain at most one zero:

$$
1^{*}(0 \mid \varepsilon) 1^{*} \quad 1^{*} 0 ? 1^{*}
$$

11110111
111111
0111
0

Applied Regular Expressions

- Suppose our alphabet is a, @, and ., where a represents "some letter."
- A regular expression for email addresses is

$$
\begin{aligned}
& \text { aa* (.aa*)* @ } \mathbf{a a *} . a a^{*}\left(. a a^{*}\right)^{*} \\
& \mathrm{a}+\left(. \mathrm{a}^{+}\right)^{*} \text { @ } \mathrm{a}+\text {. } \mathrm{a}^{+}(. \mathrm{a}+)^{\text {* }} \\
& \left.a+\left(. a^{+}\right)^{*} @ \text { a+ . (. } \mathrm{a}+\right)^{+}
\end{aligned}
$$

abc@whu.edu.cn

Applied Regular Expressions

- Suppose that our alphabet is all ASCII characters.
- A regular expression for even numbers is
$(+\mid-) ?(0|1| 2|3| 4|5| 6|7| 8 \mid 9)^{*}(0|2| 4|6| 8)$
(+|-)?[0123456789]*[02468]
(+|-)?[0-9]*[02468]

42
+1370
-3248
-9999912

More examples

Keyword: "else" or "if" or "begin" or ... 'else'| 'if' | 'begin' | . . .

Integer: a non-empty string of digits
digit = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
integer $=$ digit digit*
Abbreviation: $\mathrm{A}^{+}=\mathrm{AA}$ *

Identifier: strings of letters or digits, starting with a letter letter = 'A' | . . . |'Z' | 'a'| . . . |'z'
identifier $=$ letter $($ letter \mid digit)* Is (letter* ${ }^{*}$ digit*) the same?

Regular Expression

Finite Automaton

Implementing Regular Expressions

- Regular expressions can be implemented using finite automata.
- Regular expressions = specification
- Finite automata = implementation
- There are two main kinds of finite automata:
- NFAs (nondeterministic finite automata), which we'll see in a second, and
- DFAs (deterministic finite automata), which we'll see later.

Finite Automatons

- A finite automaton is a 5 -tuple $\left(S, \Sigma, \delta, S_{0}, F\right)$
- A set of states S--- nodes
- An input alphabet Σ
- A transition function $\delta\left(\mathrm{S}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{S}_{\mathrm{j}}$
- A start state S_{0}
- A set of accepting states $F \subseteq S$

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

"	\mathbf{H}	\mathbf{E}	\mathbf{Y}	\mathbf{A}	"

The automaton takes a string as input and decide whether to accept or reject the string.

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

A Simple Automaton

A Simple Automaton

A Simple Automaton

$$
\mathrm{A}, \mathrm{~B}, \mathrm{C}, \ldots, \mathrm{Z}
$$

A Simple Automaton

A Simple Automaton

A Simple Automaton

A Simple Automaton

$$
A, B, C, \ldots, Z
$$

The double circle indicates that this

state is an accepting state.
The automaton
accepts string if it ends in an
accepting state.

Finite Automatons

- Input: a string
- Output: accept if the scanning of input string reaches its EOF and the FA reaches an accepting state; reject otherwise

Strings accepted by an FA

- An FA accepts an input string x iff there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a move
- The language defined by an FA is the set of input strings it accepts, such as (a|b)*abb for the example NFA

Strings accepted by an FA

A More Complex Automaton

"1010": accept
"101": reject

A More Complex Automaton

A More Complex Automaton

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 2 & . & 3 & 7 & 5 \\
\hline
\end{array}
$$

Finite Automata

- Finite automata is a recognizer
- Given an input string, they simply say "yes" or "no" about each possible input string

Nondeterministic Finite Automata (NFA)

- Definition: an NFA is a 5 -tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$ where
- S is a finite set of states
$-\Sigma$ is a finite set of input symbol alphabet
$-\delta$ is a mapping from $S \times \Sigma \cup\{\varepsilon\}$ to a set of states
$-S_{0} \subseteq S$ is the set of start states
$-F \subseteq S$ is the set of accepting (or final) states

Nondeterministic Finite Automat (NFA)

Transition Graph

Node: State

- Non-terminal state:

- Terminal state:

- Starting state:

Edge: state transition

Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

Nondeterministic Finite Automata (NFA)

Transit table

- Line: State
- Starting state: in general, the first line, or label "+";
- Terminal state: "*" or "-";
- Column: All symbols in Σ
- Cell: state transition mapping

Transition Table

- The mapping δ of an NFA can be represented in a transition table

$$
\begin{aligned}
& \delta(0, \mathbf{a})=\{0,1\} \\
& \delta(0, \mathbf{b})=\{0\} \\
& \delta(1, \mathbf{b})=\{2\} \\
& \delta(2, \mathbf{b})=\{3\}
\end{aligned} \longrightarrow \begin{array}{|c|c|c|}
\text { State } & \begin{array}{c}
\text { Input } \\
\mathbf{a}
\end{array} & \begin{array}{c}
\text { Input } \\
\mathbf{b}
\end{array} \\
\hline 0 & \{0,1\} & \{0\} \\
\hline 1 & & \{2\} \\
\hline 2 & & \{3\} \\
\hline
\end{array}
$$

NFA Example 2

Acceptance of input strings

$$
\begin{aligned}
& 0 \xrightarrow{a} 0 \xrightarrow{a} 1 \xrightarrow{b} 3 \\
& 0 \xrightarrow{a} 0 \xrightarrow{a} 0 \xrightarrow{b} 0
\end{aligned}
$$

NFA Example 3

	a	b	ε
S^{+}	$\{\mathrm{S} 1, \mathrm{~S} 3\}$		$\{\mathrm{S} 2\}$
S^{+}		$\{\mathrm{S} 1\}$	$\{\mathrm{S} 2\}$
S 2			$\{\mathrm{~S} 3\}$
$\mathrm{S} 3^{-}$		$\{\mathrm{S} 3\}$	

Deterministic Finite Automata (DFA)

- Definition: an DFA is a 5 -tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$, is a special case of NFA
- There are no moves on input ε, and
- For each state s and input symbol a, there is exactly one edge out of s labeled a.

Deterministic Finite Automata (DFA)

- $\quad \mathrm{DFA} M=(\{\mathrm{S} 0, \mathrm{~S} 1, \mathrm{~S} 2, \mathrm{~S} 3\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{f}, \mathrm{S} 0,\{\mathrm{~S} 3\})$, :
$\mathrm{f}(\mathrm{S} 0, \mathrm{a})=\mathrm{S} 1$
$\mathrm{f}(\mathrm{S} 2, \mathrm{a})=\mathrm{S} 1$
$\mathrm{f}(\mathrm{SO}, \mathrm{b})=\mathrm{S} 2$
$f(S 2, b)=S 3$
$f(S 1, a)=S 3$
$f(S 3, a)=S 3$
$f(S 1, b)=S 2$
f(S3, b)= S3

Deterministic Finite Automata (DFA)

- For example, DFA M=(\{0,1,2,3,4\},\{a,b\}, $\delta,\{0\},\{3\})$
- $\delta(0, a)=1 \quad \delta(0, b)=4$
$\delta(1, a)=4 \quad \delta(1, b)=2$
$\delta(2, a)=3 \quad \delta(2, b)=4$
$\delta(3, a)=3 \quad \delta(3, b)=3$
$\delta(4, a)=4 \quad \delta(4, b)=4$

	a	b
0^{+}	1	4
1	4	2
2	3	4
3^{-}	3	3
4	4	4

Deterministic Finite Automata (DFA)

	a	b
$0+$	1	4
1	4	2
2	3	4
$3-$	3	3
4	4	4

Deterministic Finite Automata (DFA)

	a	b
$0+$	1	\perp
1	\perp	2
2	3	\perp
3^{-}	3	3

\longleftrightarrow| | a | b |
| :---: | :---: | :---: |
| $0+$ | 1 | |
| 1 | | 2 |
| 2 | 3 | |
| 3^{-} | 3 | 3 |

Deterministic Finite Automata (DFA)

$$
\begin{aligned}
& \Sigma:\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\} \\
& \text { S: }\{\mathbf{S 0} \mathbf{, ~ S 1 , ~ S 2 , ~ S 3 \}} \\
& \text { Start: S0 } \\
& \text { Terminal: }\{\mathbf{S} 3\} \\
& \mathrm{f}:\{(\mathbf{S 0}, \mathbf{a}) \rightarrow \mathbf{S 1},(\mathbf{S 0}, \mathbf{c}) \rightarrow \mathbf{S 2}, \\
& (\mathbf{S 0 , d}) \rightarrow \mathbf{S 3},(\mathbf{S} 1, b) \rightarrow \mathbf{S 1}, \\
& (\mathbf{S 1}, \mathbf{d}) \rightarrow \mathbf{S 2},(\mathbf{S 2}, \mathbf{a}) \rightarrow \mathbf{S 3}, \\
& (\mathrm{S} 3, \mathrm{c}) \rightarrow \mathrm{S} 3\}
\end{aligned}
$$

NFA v.s. DFA

NFA v.s. DFA

	DFA	NFA
Initial	Single starting state	A set of starting states
ε dege	Not allowed	Allowed
$\delta(\mathrm{S}$, a)	S' $^{\prime}$ or \perp	$\{\mathrm{S} 1, \ldots, \mathrm{Sn}\}$ or \perp
Implementation	Deterministic	Nondeterministic

- DFA accepts an input string with only one path
- NFA accepts an input string with possibly multiple paths

Construct DFA from NFA

- Construct DFA from NFA
- For any NFA, there exists an equivalent DFA
- Idea of construction: eliminate the uncertainty
- Merge N states in NFA into one single state
- Eliminate ε

- Eliminate multiple mapping

Construct DFA from NFA

- INPUT: An NFA N.
- OUTPUT: A DFA D accepting the same language as N .
- METHOD: The algorithm constructs a transition table Dtran for D. Each state of D is a set of NFA states, and we construct Dtran so D will simulate "in parallel" all possible moves N can make on a given input string.

OPERATION	DESCRIPTION
ϵ-closure (s)	Set of NFA states reachable from NFA state s on ϵ-transitions alone.
ϵ-closure (T)	Set of NFA states reachable from some NFA state s in set T on ϵ-transitions alone; $=U_{s}$ in T ϵ-closure (s).
move (T, a)	Set of NFA states to which there is a transition on input symbol a from some state s in T.

ε-closure and move Examples

The Subset Construction Algorithm

- NFAs can be in many states at once, while DFAs can only be in a single state at a time.
- Key idea: Make the DFA simulate the NFA.
- Have the states of the DFA correspond to the sets of states of the NFA.
- Transitions between states of DFA correspond to transitions between sets of states in the NFA.

The Subset Construction Algorithm

```
initially, \epsilon-closure(so) is the only state in Dstates, and it is unmarked;
while (there is an unmarked state T in Dstates) {
    mark T;
    for (each input symbol a) {
        U = \epsilon-closure(move(T,a));
        if (U is not in Dstates)
            add U as an unmarked state to Dstates;
        Dtran[T,a]=U;
    }
}
```


Subset Construction Example 1

First, Initial state of NFA is ε-closure(0),
i.e. $A=\{0,1,2,4,7\}, \quad \Sigma=\{a, b\}$
$r=(a \mid b)^{*} a b b$

$\operatorname{Dtran}[A, a]=\varepsilon-\operatorname{closure}(\operatorname{move}(A, a))=\varepsilon-\operatorname{closure}(\{3,8\})=\{1,2,3,4,6,7,8\}$, Let $B=D \operatorname{tran}[A, a]$
$\operatorname{Dtran}[A, b]=\varepsilon$-closure $($ move $(A, b))=\varepsilon$-closure $(\{5\})=\{1,2,4,6,7\}$, Let $\mathrm{C}=\mathrm{D} \operatorname{tran}[\mathrm{A}, \mathrm{b}]$

Subset Construction Example 1

> $\operatorname{Dtran}[B, a]=\varepsilon$-closure $(\operatorname{move}(B, a))=\varepsilon-$ closure($\{3,8\})=\{1,2,3,4,6,7,8\}=$ B Dtran[B,b]= ε-closure $(\operatorname{move}(\mathrm{B}, \mathrm{b}))=\varepsilon$ closure(\{5,9\})=\{1,2,4,5,6,7,9\}, Let $\mathrm{D}=\mathrm{D} \operatorname{tran}[\mathrm{B}, \mathrm{b}]$

$\operatorname{Dtran}[\mathrm{C}, \mathrm{a}]=\varepsilon$-closure $(\operatorname{move}(\mathrm{C}, \mathrm{a}))=\varepsilon$-closure $(\{3,8\})=\{1,2,3,4,6,7,8\}=\mathrm{B}$ Dtran[C,b]= $=$-closure $(\operatorname{move}(C, b))=\varepsilon$-closure $(\{5\})=\{1,2,4,6,7\}=C$

Subset Construction Example 1

$\operatorname{Dtran}[E, a]=\varepsilon$-closure $(\operatorname{move}(E, a))=\varepsilon$-closure $(\{3,8\})=\{1,2,3,4,6,7,8\}=B$ $\operatorname{Dtran}[E, b]=\varepsilon$-closure $(\operatorname{move}(E, b))=\varepsilon$-closure $(\{5\})=\{1,2,4,6,7\}=C$

Subset Construction Example 1

NFA STATE	DFA STATE	a	b
$\{0,1,2,4,7\}$	A	B	C
$\{1,2,3,4,6,7,8\}$	B	B	D
$\{1,2,4,5,6,7\}$	C	B	C
$\{1,2,4,5,6,7,9\}$	D	B	E
$\{1,2,3,5,6,7,10\}$	E	B	C

Homework-W2

Homework - week 2

- pp.125, Exercise 3.3.2 (a)(c), 3.3.5 (a)(e)
- pp.151-152, Exercise 3.6.3, Exercise 3.6.4
- pp.152, Exercise 3.6.5
- pp. 166, Exercise 3.7.1 (b)

[^0]: T_While

[^1]: T_While

[^2]: T_While

[^3]: T_While

[^4]: T_While

[^5]: T While

