
Lecture 3: Lexical Analysis
Cont.

Xiaoyuan Xie  谢晓园
xxie@whu.edu.cn
计算机学院E301



2018/9/15 2

Where We A re

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Source
Code

Machine
Code

Machine
Code



2018/9/15 3

Formalisms of tokens



Regular Expression

Finite Automaton

2018/9/15 4



2018/9/15 5

Implement ing Regular Expressions

• Regular expressions can be implemented 
using finite automata.

• Regular expressions = specification
• Finite automata = implementation

• There are two main kinds of finite 
automata:

• NFAs (nondeterministic finite automata)
• DFAs (deterministic finite automata



2018/9/15 6

Fini te  Automatons

• A finite automaton is a 5-tuple (S,,,s0,F) 
• A set of states S --- nodes
• An input alphabet Σ
• A transition function (Si, a)=Sj

• A start state S0

• A set of accepting states F S



2018/9/15 7

Fini te  Automatons

• Input: a string
• Output：accept if the scanning of input 

string reaches its EOF and the FA reaches 
an accepting state; reject otherwise 

1 0 1 1 0 …

状态控制器
Head

Input string
Output

FA



8

Strings accepted by an FA

• An FA accepts an input string x iff there is some path 
with edges labeled with symbols from x in sequence 
from the start state to some accepting state in the 
transition graph



2018/9/15 9

A M ore Complex Autom aton

“1010”: accept

“101”: reject

A state transition from one state to another 
on the path is called a move



2018/9/15 10

A M ore Complex Autom aton

h i 1 2 3



2018/9/15 11

A M ore Complex Autom aton

1 2 . 3 7 5



12

Language defined by an FA

• The language defined by an FA is the set of input 
strings it accepts, such as (a|b)*abb for the example 
NFA



2018/9/15 13

(a|b)*abb

aa*|bb*

Languages defined by an FA



2018/9/15 14

Finite Automata

• Finite automata is a recognizer

• Given an input string, they simply say "yes" or 
"no" about each possible input string

– NFAs (nondeterministic finite automata)

– DFAs (deterministic finite automata

• To describe NFA or DFA, we have two methods

– Transition diagram

– Transition table



15

Nondeterministic Finite Automata
(NFA)

• Definition: an NFA is a 5-tuple (S,,,s0,F) 
where
– S is a finite set of states

–  is a finite set of input symbol alphabet

–  is a mapping from S Σ U {ε} to a set of 
states

– S0  S is the set of start states

– F  S is the set of accepting (or final) states



• Transition Graph

Node：State

– Non-terminal state:

– Terminal state:

– Starting state：

Edge：state transition

S0

Si

Sk

Si Sjf(Si,a)=Sj
a

Nondeterministic Finite Automata
(NFA)



17

Transition Graph

• An NFA can be diagrammatically represented 
by a labeled directed graph called a transition 
graph

0start a
1 32

ε b

a

b

S = {0,1,2,3}
 = {a,b}
s0 = 0
F = {3}



• Transit table
– Line：State

• Starting state：in general, the first line，or label “+”；

• Terminal state: “*” or “-” or “⊥”；

– Column：All symbols in 
– Cell：state transition mapping

Nondeterministic Finite Automata
(NFA)



19

Transition Table

• The mapping  of an NFA can be represented 
in a transition table

State
Input
a

Input
b

0 {0,1} {0}

1 {2}

2 {3}

(0,a) = {0,1}
(0,b) = {0}
(1,b) = {2}
(2,b) = {3}



2018/9/15 20

NFA Example 2

Transition Table

Acceptance of input strings



NFA Example 3

S0
a

S2

S3



a





b

b

S1

a b 

S0+ {S1,S3} {S2}

S1+ {S1} {S2}

S2 {S3}

S3- {S3}



22

Deterministic Finite Automata
(DFA)

• Definition: an DFA is a 5-tuple 
(S,,,s0,F), is a special case of NFA

– There are no moves on input , and

– For each state s and input symbol a, there 
is exactly one edge out of s labeled a.



• DFA M=( {S0, S1, S2, S3}, {a,b}, f, S0, {S3}), ：
f (S0, a )=S1                   f (S2, a )=S1

f (S0, b )=S2                   f (S2, b )= S3

f (S1, a )= S3                  f (S3, a )= S3

f (S1, b )= S2                  f (S3, b )= S3

S1

S0

S2

S3

a
a

b a

b

a

b

,b

Deterministic Finite Automata
(DFA)



• For example, DFA M=({0,1,2,3,4},{a,b}, ,{0},{3})
• ( 0, a ) = 1      ( 0, b ) = 4
 ( 1, a ) = 4     ( 1, b ) = 2
 ( 2, a ) = 3     ( 2, b ) = 4
( 3, a ) = 3      ( 3, b ) = 3
 ( 4, a ) = 4     ( 4, b ) = 4

a b

0+ 1 4

1 4 2

2 3 4

3- 3 3

4 4 4

Deterministic Finite Automata
(DFA)



a b

0+ 1 4

1 4 2

2 3 4

3- 3 3

4 4 4

0 21 3a

b
a b

a

b

b a

4
ab

Deterministic Finite Automata
(DFA)



a b

0+ 1 

1  2

2 3 

3- 3 3

0 21 3a

a

b

b a

a b

0+ 1

1 2

2 3

3- 3 3

Deterministic Finite Automata
(DFA)



: {a, b, c, d}                             

S: {S0, S1, S2, S3}

Start: S0

Terminal: {S3}

f: {(S0,a) S1, (S0,c)S2, 

(S0,d)S3, (S1,b)S1, 

(S1,d)S2, (S2,a)S3, 

(S3, c)S3}

S0 a S1

S2

S3

c

d

d

a

b

c

Deterministic Finite Automata
(DFA)



NFA v.s. DFA

2018/9/15 28



DFA NFA

Initial Single starting state A set of starting states

 dege Not allowed Allowed

 (S, a) S’ or ⊥ {S1, …, Sn} or ⊥

Implementation Deterministic Nondeterministic

NFA v.s. DFA

• DFA accepts an input string with only one path

• NFA accepts an input string with possibly multiple paths



• Construct DFA from NFA

– For any NFA, there exists an equivalent DFA

– Idea of construction: eliminate the uncertainty 

– Merge N states in NFA into one single state
• Eliminate 
• Eliminate multiple mapping

Construct DFA from NFA

1

2

3

a

a 1 2,3
a

4 5


4，5



• INPUT: An NFA N.

• OUTPUT: A DFA D accepting the same language as N.

• METHOD: The algorithm constructs a transition table 

Dtran for D. Each state of D is a set of NFA states, and we 

construct Dtran so D will simulate “in parallel” all possible 

moves N can make on a given input string. 

Construct DFA from NFA



32

-closure and move Examples

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}
-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}
-closure({7}) = {7}
move({7},b) = {8}
-closure({8}) = {8}
move({8},a) = 

0

1

3

7

2

4

7

7 8

a ba a none

Also used to simulate NFAs



Simulating the NFA



34

Simulating a NFA Example 1

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

7 8

Must find the longest match:
Continue until no further moves are possible
When last state is accepting: execute action

action1

action2

action3

a ba b
action3



35

Simulating a NFA Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the
first action given in the Lex specification is executed

action1

action2

action3

a bb b
action2

action3



• NFAs can be in many states at once, while 
DFAs can only be in a single state at a time.

• Key idea: Make the DFA simulate the NFA.

• Have the states of the DFA correspond to the 
sets of states of the NFA.

• Transitions between states of DFA correspond 
to transitions between sets of states in the NFA.

The Subset Construction Algorithm



37

The Subset Construction Algorithm



First，Initial state of NFA is ε-closure(0)，
i.e. A={0，1，2，4，7}，  = {a,b}
First，Initial state of NFA is ε-closure(0)，
i.e. A={0，1，2，4，7}，  = {a,b}

Dtran[A,a]=ε-closure(move(A,a))=ε-closure({3,8})={1,2,3,4,6,7,8},
Let B=Dtran[A,a]
Dtran[A,b]=ε-closure(move(A,b))=ε-closure({5})={1,2,4,6,7},
Let C=Dtran[A,b]

Dtran[A,a]=ε-closure(move(A,a))=ε-closure({3,8})={1,2,3,4,6,7,8},
Let B=Dtran[A,a]
Dtran[A,b]=ε-closure(move(A,b))=ε-closure({5})={1,2,4,6,7},
Let C=Dtran[A,b]

Subset Construction Example 1

r=(a|b)*abb



Dtran[B,a]=ε-closure(move(B,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[B,b]=ε-closure(move(B,b))=ε-
closure({5,9})={1,2,4,5,6,7,9},
Let D=Dtran[B,b]

Dtran[B,a]=ε-closure(move(B,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[B,b]=ε-closure(move(B,b))=ε-
closure({5,9})={1,2,4,5,6,7,9},
Let D=Dtran[B,b]

Subset Construction Example 1

r=(a|b)*abb

Dtran[C,a]=ε-closure(move(C,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[C,b]=ε-closure(move(C,b))=ε-closure({5})={1,2,4,6,7}=C
Dtran[C,a]=ε-closure(move(C,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[C,b]=ε-closure(move(C,b))=ε-closure({5})={1,2,4,6,7}=C



Dtran[D,a]=ε-closure(move(D,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[D,b]=ε-closure(move(D,b))=ε-
closure({5,10})={1,2,4,5,6,7,10},
Let E=Dtran[D,b]

Dtran[D,a]=ε-closure(move(D,a))=ε-
closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[D,b]=ε-closure(move(D,b))=ε-
closure({5,10})={1,2,4,5,6,7,10},
Let E=Dtran[D,b]

Dtran[E,a]=ε-closure(move(E,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[E,b]=ε-closure(move(E,b))=ε-closure({5})={1,2,4,6,7}=C
Dtran[E,a]=ε-closure(move(E,a))=ε-closure({3,8})={1,2,3,4,6,7,8}=B
Dtran[E,b]=ε-closure(move(E,b))=ε-closure({5})={1,2,4,6,7}=C

Subset Construction Example 1

r=(a|b)*abb



Subset Construction Example 1



42

Subset Construction Example 2

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






a1

a2

a3

C = {8}
D = {7}
E = {5,8}
F = {6,8}

A
start

a

D

b

b

b

a
b

b
B

C

E F

a

b

a1

a3

a3 a2 a3

Dstates
A = {0,1,3,7}
B = {2,4,7}



RE to NFA/DFA

2018/9/15 43



44

Design of a Lexical Analyzer Generator

• Translate regular expressions to NFA

• Translate NFA to an efficient DFA

regular
expressions

NFA DFA

Simulate NFA
to recognize

tokens

Simulate DFA
to recognize

tokens

Optional

Regular Language
(Lexical Specification)



45

From Regular Expression to NFA 
(Thompson’s Construction)

N(r2)N(r1)

fi 

f
a

i

fi
N(r1)

N(r2)

start

start

start 

 



fi
start

N(r) fi
start







a  Σ

r1 | r2

r1r2

r*  



46

Combining the NFAs of a Set of Regular 
Expressions

2
a

1
start

6
a

3
start

4 5
b b

8b7
start

a b

a { action1 }
abb { action2 }
a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8b7

a b
0

start






a | abb | a*b+

{ action1 }

{ action2 }

{ action3 }

{ action1 }

{ action2 }

{ action3 }



r=(a|b)*abb

r1 = a，r2=b, we have NFA:

r3 = r1|r2, we have NFA:

Combining the NFAs of a Set of Regular 
Expressions



r=(a|b)*abb

r5 = r3*, we have NFA:

r6 = a, we have NFA:

Combining the NFAs of a Set of Regular 
Expressions



r=(a|b)*abb

r7 = r5r6, we have NFA:

Combining the NFAs of a Set of Regular 
Expressions



r=(a|b)*abb

Combining the NFAs of a Set of Regular 
Expressions



The Subset Construction Algorithm

From NFA to DFA



From NFA to DFA



After conversion from NFA, the DFA may 
contain some equivalent states, which lead to 
low efficiency in the analysis

1 2 3 4

5 6 7

a b c

cbd

a b c

d

1 2 3 4

Minimizing DFA



• Lots of methods

• All involve finding equivalent states:

– States that go to equivalent states under all 
inputs (sounds recursive)

• We will use the Partitioning Method

Minimizing DFA



• Step 1 
– Start with an initial partition II with two group: F and S-F 

(aceepting and nonaccepting)

• Step 2
– Split Procedure

• Step 3
– If  ( IInew = II )  

IIfinal = II and continue step 4
else

II = IInew and go to step 2

• Step 4
– Construct the minimum-state DFA by IIfinal group.
– Delete the dead state

Minimizing DFA



Split Procedure



 DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}),其中δ见表

states a b

0 1 2

1 1 4

2 1 3

3 3 2

4 0 5

5 5 4

Step 1:
A={0,1}, B={2,3,4,5}。

States parti
tion a b

0 A 1(A) 2(B)

1 A 1(A) 4(B)

2 B 1(A) 3(B)

3 B 3(B) 2(B)

4 B 0(A) 5(B)

5 B 5(B) 4(B)

Minimizing the DFA

Major operation: partition states into equivalent classes according to: 
final / non-final states; transition functions



 DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}),

stat
es

parti
tion a b

0 A 1(A) 2(B)

1 A 1(A) 4(B)

2 B 1(A) 3(B)

3 B 3(B) 2(B)

4 B 0(A) 5(B)

5 B 5(B) 4(B)

stat
es

partit
ion a b

0 A 1(A) 2(B)

1 A 1(A) 4(B)

2 B 1(A) 3(C)

3 C 3(C) 2(B)

4 B 0(A) 5(C)

5 C 5(C) 4(B)

sta
tes

a b

0 1 2

1 1 4

2 1 3

3 3 2

4 0 5

5 5 4

Cannot be divided 
any more
Cannot be divided 
any more

Minimizing the DFA



 DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}) is minimized to：

DFA D‘=({A,B,C}, {a,b}, δ，A，{A})，where δ is defined as follows

state a b

A A B

B A C

C C B

Minimizing the DFA



 r=(a|b)*abb

Initially, we have {A,B,C,D},{E}, which are for non-terminal and 
terminal states
Initially, we have {A,B,C,D},{E}, which are for non-terminal and 
terminal states

{E} is not dividable, so we only consider {A, B, C, D}{E} is not dividable, so we only consider {A, B, C, D}

Minimizing the DFA-Example



 r=(a|b)*abb
Is {A,B,C,D} dividable?Is {A,B,C,D} dividable?

Minimizing the DFA-Example

What happens when  take in a under 
{A,B,C,D}? --- still with {A, B, C, D}
What happens when  take in a under 
{A,B,C,D}? --- still with {A, B, C, D}

What happens when  take in b under 
{A,B,C,D}? --- becomes {A,B,C}，{D}
What happens when  take in b under 
{A,B,C,D}? --- becomes {A,B,C}，{D}



 r=(a|b)*abb

Minimizing the DFA-Example

{D} is not dividable, so let us see whether 
{A,B,C} is dividable?
{D} is not dividable, so let us see whether 
{A,B,C} is dividable?

{A, B, C} becomes {A,C},{B}{A, B, C} becomes {A,C},{B}



 r=(a|b)*abb

Finally, we have {A,C},{B},{D},{E}Finally, we have {A,C},{B},{D},{E}

Minimizing the DFA-Example

{A,C} is dividable?{A,C} is dividable?



Example

 initially, two sets {1, 2, 3, 5, 6}, {4, 7}.

 {1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.

 {1, 2, 5} splits {1}, {2, 5} on b.



RE v.s. NFA/DFA

 RE，DFA(NFA)，L(RE) are equivalent to each 

other

Regular Expression

Regular GrammarFinite Automata



Exercise

 Given an NFA N

(1) Simulate the NFA on input “aaabb”

(2) Convert the NFA N to its equivalent DFA M

(3) Minimize the DFA M

(4) Describe what can this DFA/NFA accept in natural language

(5) Write down the regular expression re, such that L(re) = L(N)



2018/9/15 67

Homework-W3



2018/9/15 68

• pp. 125, Exercise 3.3.5 (c)(d)(f)(h)
• pp.152, Exercise 3.6.5
• pp. 166, Exercise 3.7.1 (b), Exercise 3.7.2 (b), 

Exercise 3.7.3 (d)
• pp. 172, Exercise 3.8.1
• pp.187, Exercise 3.9.4

Homework – week 3



2018/9/15 69

Lexical Analyzer 
Implementation



Overview

• Writing a compiler is difficult requiring lots of time 
and effort

• Construction of the scanner and parser is routine 
enough that the process may be automated

Lexical Rules

Grammar

Semantics

Compiler
Compiler

Scanner
---------
Parser
---------
Code
generator



Overview



LEX

• Lex is a scanner generator

– Input is description of patterns and actions

– Output is a C program which contains a 
function yylex() which, when called, matches 
patterns and performs actions per input

– Typically, the generated scanner performs 
lexical analysis and produces tokens for the 
(YACC-generated) parser



YACC

• What is YACC ?
– Tool which will produce a parser for a given 

grammar.
– YACC (Yet Another Compiler Compiler) is a 

program designed to compile a LALR(1) 
grammar and to produce the source code of the 
syntactic analyzer of the language produced by 
this grammar

– Input is a grammar (rules) and actions to take 
upon recognizing a rule

– Output is a C program and optionally a header 
file of tokens



LEX and YACC: a team



Availability

• lex, yacc on most UNIX systems

• bison: a yacc replacement from GNU

• flex: fast lexical analyzer

• BSD yacc

• Windows/MS-DOS versions exist



Lex

LexLex source file
*.l

lex.yy.c

C Compilerlex.yy.c a.out

a.outInput stream Token sequence

Create your lexical analyzer with Lex



Declaration

%{ constant

}%

%%

Translation 
rules

%%

Auxiliary 
functions

%{ ID,NUM,IF,ADD

}%

Regular definition letter  [A-Za-z]
digit  [0-9]
id     {letter}({letter}|{digit})*
num {digit}+

if   {return (IF);}
+   {return(ADD);}
{id} {yylval = strcpy(yytext, 

yylength); return(ID)；}
{num} {yylval = Change();

return(NUM);}Functions used in the action
int  Change()

{  /*Convert string into integer*/
}

Pattern {Action}：
• Pattern is a regular 

expression or regular 
definition

• Action is in C, describing 
the actions after matching 
the regular expression

yylval：value of the token
yytext：lexeme of the token
yyleng：length of the lexeme

yylval：value of the token
yytext：lexeme of the token
yyleng：length of the lexeme

Structure of Lex source file



Example: LEX
%{
#include <stdio.h>
#include "y.tab.h"
%}
id        [_a-zA-Z][_a-zA-Z0-9]*
wspc      [ \t\n]+
semi      [;]
comma     [,]
%%
int       { return INT; }
char      { return CHAR; }
float     { return FLOAT; }
{comma}   { return COMMA; }        /* Necessary? */
{semi}    { return SEMI; }
{id}      { return ID;}
{wspc}    {;}

scanner.l



Example: Definitions

%{

#include <stdio.h>

#include <stdlib.h>

%}

%start  line

%token  CHAR, COMMA, FLOAT, ID, INT, SEMI

%%

decl.y



/* This production is not part of the "official"

* grammar. It's primary purpose is to recover from

* parser errors, so it's probably best if you leave 

* it here. */

line :  /* lambda */

| line decl

| line error {

printf("Failure :-(\n");

yyerrok; 

yyclearin;

}

;

Example: Rules
decl.y



Example: Rules

decl :  type ID list { printf("Success!\n"); } ;

list :  COMMA ID list 

| SEMI

;

type :   INT | CHAR | FLOAT

;

%%

decl.y



Example: Supplementary Code

extern FILE *yyin;
main()
{

do {
yyparse();

} while(!feof(yyin));
}
yyerror(char *s)
{

/* Don't have to do anything! */
}

decl.y



Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

2018/9/15 83

Next Time

Source
Code

Machine
Code

Machine
Code


