Lecture 3: Lexical Analysis Cont.

Xiaoyuan Xie 谢晓园 xxie@whu.edu.cn 计算机学院E301

Where We Are

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

2018/9/15

Formalisms of tokens

Regular Expression

Finite Automaton

Implementing Regular Expressions

- Regular expressions can be implemented using finite automata.
 - Regular expressions = specification
 - Finite automata = implementation
- There are two main kinds of finite automata:
 - NFAs (nondeterministic finite automata)
 - **DFAs** (deterministic finite automata

Finite Automatons

- A finite automaton is a 5-tuple $(S, \Sigma, \delta, s_0, F)$
 - A set of states S --- nodes
 - An input alphabet Σ
 - A transition function $\delta(S_i, a) = S_i$
 - A start state S₀
 - A set of accepting states $F \subseteq S$

Finite Automatons

- Input: a string
- Output: accept if the scanning of input string reaches its EOF and the FA reaches an accepting state; reject otherwise

Strings accepted by an FA

 An FA accepts an input string x iff there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph

A More Complex Automaton

"1010": accept

"101": reject

A state transition from one state to another on the path is called a *move*

2018/9/15

2018/9/15

A More Complex Automaton

Language defined by an FA

 The language defined by an FA is the set of input strings it accepts, such as (a|b)*abb for the example NFA

Languages defined by an FA

(a|b)*abb

aa* | bb*

Finite Automata

- Finite automata is a recognizer
- Given an input string, they simply say "yes" or "no" about each possible input string
 - NFAs (nondeterministic finite automata)
 - DFAs (deterministic finite automata
- To describe NFA or DFA, we have two methods
 - Transition diagram
 - Transition table

- Definition: an NFA is a 5-tuple (S,Σ,δ,s₀,F) where
 - S is a finite set of states
 - $-\Sigma$ is a finite set of *input symbol alphabet*
 - δ is a mapping from S× Σ U {ε} to a set of states
 - $-S_0 \subseteq S$ is the set of *start states*
 - $-F \subseteq S$ is the set of accepting (or final) states

- Transition Graph
 - Node: State
 - Non-terminal state: (S_i)
 Terminal state: (S_k)
 - Starting state: -
 - **Edge:** state transition $f(S_i,a)=S_j$

 $=S_{j} \quad \underbrace{S_{i}}^{a} \xrightarrow{a} \underbrace{S_{j}}^{a}$

Transition Graph

 An NFA can be diagrammatically represented by a labeled directed graph called a *transition* graph

• Transit table

- Line: State
 - Starting state: in general, the first line, or label "+";
 - Terminal state: "*" or "-" or " \perp ";
- Column: All symbols in $\boldsymbol{\Sigma}$
- Cell: state transition mapping

Transition Table

- The mapping δ of an NFA can be represented in a transition table

편이 가지 못했다. 알려져 갈려져 있던 아파는 것이가 잘 알려져 있는 것이다. 한 것이 같이 나라			승규는 전쟁에서는 가운데, 아름이지,
$\delta(0,a) = \{0,1\}$	State	Input a	Input b
$\delta(0,\mathbf{b}) = \{0\}$	0	{0,1}	{0}
$\delta(1,b) = \{2\}$	1		{2}
$O(2,D) = \{3\}$	2		{3}

NFA Example 2

Transition Table

STATE	a	b	ε
0	$\{0,1\}$	{0}	Ø
1	Ø	{2}	Ø
2	Ø	{3}	Ø
3	Ø	Ø	Ø

Acceptance of input strings

- Definition: an DFA is a 5-tuple (S,Σ,δ,s_0,F) , is a special case of NFA
 - There are no moves on input ϵ , and
 - For each state s and input symbol a, there is exactly one edge out of s labeled a.

f (S2, b)= S3

- DFA M=({S0, S1, S2, S3}, {a,b}, f, S0, {S3}), :
 f (S0, a)=S1
 f (S2, a)=S1
 - f (S0, b)=S2
 - f (S1, a)= S3 f (S1, b)= S2 f (S3, a)= S3

• For example, DFA M=($\{0,1,2,3,4\},\{a,b\},\delta,\{0\},\{3\}$)

•
$$\delta(0, a) = 1$$
 $\delta(0, b) = 4$
 $\delta(1, a) = 4$ $\delta(1, b) = 2$
 $\delta(2, a) = 3$ $\delta(2, b) = 4$
 $\delta(3, a) = 3$ $\delta(3, b) = 3$
 $\delta(4, a) = 4$ $\delta(4, b) = 4$

		CONTRACTOR OF	Contraction of the second
		а	b
100	0+	1	4
11.2	1	4	2
	2	3	4
12	3⁻	3	3
	4	4	4

a

b

		а	b
	0+	1	
\rightarrow	1		2
	2	3	
	3-	3	3

	а	b
0+	1	T
1	1	2
2	3	Т
3-	3	3

∑: {a, b, c, d} S: {S0, S1, S2, S3} Start: S0 Terminal: {S3} f: {(S0,a)→ S1, (S0,c)→S2, (S0,d)→S3, (S1,b)→S1, (S1,d)→S2, (S2,a)→S3, (S3, c)→S3}

NFA v.s. DFA

2018/9/15

NFA v.s. DFA

	DFA	NFA
Initial	Single starting state	A set of starting states
ε dege	Not allowed	Allowed
$\delta(S, a)$	S' or \perp	{S1,, Sn} or \perp
Implementation	Deterministic	Nondeterministic

- DFA accepts an input string with only one path
- NFA accepts an input string with possibly multiple paths

Construct DFA from NFA

- Construct DFA from NFA
 - For any NFA, there exists an equivalent DFA
 - Idea of construction: eliminate the uncertainty
 - Merge N states in NFA into one single state
 - Eliminate ε $4 \xrightarrow{\varepsilon} 5$

4, 5

Eliminate multiple mapping

Construct DFA from NFA

- INPUT: An NFA N.
- **OUTPUT**: A DFA D accepting the same language as N.
- METHOD: The algorithm constructs a transition table Dtran for D. Each state of D is a set of NFA states, and we construct Dtran so D will simulate "in parallel" all possible moves N can make on a given input string.

OPERATION	DESCRIPTION
ϵ -closure(s)	Set of NFA states reachable from NFA state s on ϵ -transitions alone.
ϵ -closure(T)	Set of NFA states reachable from some NFA state s in set T on ϵ -transitions alone; = $\bigcup_{s \text{ in } T} \epsilon$ -closure(s).
move(T, a)	Set of NFA states to which there is a transition on input symbol a from some state s in T .

ε-closure and move Examples

Simulating the NFA

Algorithm 3.22: Simulating an NFA.

INPUT: An input string x terminated by an end-of-file character **eof**. An NFA N with start state s_0 , accepting states F, and transition function move.

OUTPUT: Answer "yes" if M accepts x; "no" otherwise.

METHOD: The algorithm keeps a set of current states S, those that are reached from s_0 following a path labeled by the inputs read so far. If c is the next input character, read by the function nextChar(), then we first compute move(S, c)and then close that set using ϵ -closure(). The algorithm is sketched in Fig. 3.37.

1)
$$S = \epsilon \text{-closure}(s_0);$$

2) $c = nextChar();$
3) while $(c != \text{eof}) \{$
4) $S = \epsilon \text{-closure}(move(S, c));$
5) $c = nextChar();$
6) $\}$
7) if $(S \cap F != \emptyset)$ return "yes";
8) else return "no";

Figure 3.37: Simulating an NFA

The Subset Construction Algorithm

- NFAs can be in many states at once, while DFAs can only be in a single state at a time.
- Key idea: Make the DFA simulate the NFA.
- Have the states of the DFA correspond to the sets of states of the NFA.
- Transitions between states of DFA correspond to transitions between sets of states in the NFA.
The Subset Construction Algorithm

```
 \begin{array}{l} \mbox{initially, $\epsilon$-closure($s_0$) is the only state in $D$states, and it is unmarked;} \\ \mbox{while ( there is an unmarked state $T$ in $D$states ) { \\ mark $T$;} \\ \mbox{for ( each input symbol $a$ ) { \\ $U = $\epsilon$-closure($move($T, $a$));} \\ $ \mbox{if ($U$ is not in $D$states $) \\ $ add $U$ as an unmarked state to $D$states; \\ $D$tran[$T, $a$] = $U$; \\ $ \\ $ \\ } \end{array}
```


Dtran[A,a]= ϵ -closure(move(A,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}, Let B=Dtran[A,a] Dtran[A,b]= ϵ -closure(move(A,b))= ϵ -closure({5})={1,2,4,6,7}, Let C=Dtran[A,b]

Dtran[B,a]= ϵ -closure(move(B,a))= ϵ closure({3,8})={1,2,3,4,6,7,8}=B Dtran[B,b]= ϵ -closure(move(B,b))= ϵ closure({5,9})={1,2,4,5,6,7,9}, Let D=Dtran[B,b]

 $Dtran[C,a]=\epsilon$ -closure(move(C,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[C,b]= ϵ -closure(move(C,b))= ϵ -closure({5})={1,2,4,6,7}=C

Dtran[E,a]= ϵ -closure(move(E,a))= ϵ -closure({3,8})={1,2,3,4,6,7,8}=B Dtran[E,b]= ϵ -closure(move(E,b))= ϵ -closure({5})={1,2,4,6,7}=C

NFA STATE	DFA STATE	a	b
$\{0, 1, 2, 4, 7\}$	A	В	\overline{C}
$\{1, 2, 3, 4, 6, 7, 8\}$	B	B	D
$\{1, 2, 4, 5, 6, 7\}$	C	B	C
$\{1, 2, 4, 5, 6, 7, 9\}$	D	B	E
$\{1, 2, 3, 5, 6, 7, 10\}$	E	B	C

RE to NFA/DFA

2018/9/15

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

From Regular Expression to NFA (Thompson's Construction)

45

a | abb | a*b+

a $\{ action_1 \}$ abb $\{ action_2 \}$ a*b+ $\{ action_3 \}$

r=(a|b)*abb

r1 = a, r2=b, we have NFA:

r3 = r1|r2, we have NFA:

r=(a|b)*abb

 $r5 = r3^*$, we have NFA:

r6 = a, we have NFA:

- r=(a|b)*abb
 - r7 = r5r6, we have NFA:

r=(a|b)*abb

From NFA to DFA

The Subset Construction Algorithm

```
initially, \epsilon-closure(s<sub>0</sub>) is the only state in Dstates, and it is unmarked;

while ( there is an unmarked state T in Dstates ) {

mark T;

for ( each input symbol a ) {

U = \epsilon-closure(move(T, a));

if ( U is not in Dstates )

add U as an unmarked state to Dstates;

Dtran[T, a] = U;

}
```

From NFA to DFA

经济和大学会通过的现在分词 化化合物 化合物化合物化合物化合物化合物 化分析化合物 法不能收入 化磷酸盐酸

Minimizing DFA

After conversion from NFA, the DFA may contain some equivalent states, which lead to low efficiency in the analysis

Minimizing DFA

- Lots of methods
- All involve finding equivalent states:
 - States that go to equivalent states under all inputs (sounds recursive)
- We will use the *Partitioning Method*

Minimizing DFA

Step 1

- Start with an initial partition II with two group: F and S-F (accepting and nonaccepting)
- Step 2
 - Split Procedure
- Step 3
 - If ($II_{new} = II$) $II_{final} = II$ and continue step 4 else

 $II = II_{new}$ and go to step 2

- Step 4
 - Construct the minimum-state DFA by $\mathrm{II}_{\mathrm{final}}$ group.
 - Delete the dead state

Split Procedure

```
initially, let \Pi_{new} = \Pi;

for ( each group G of \Pi ) {

partition G into subgroups such that two states s and t

are in the same subgroup if and only if for all

input symbols a, states s and t have transitions on a

to states in the same group of \Pi;

/* at worst, a state will be in a subgroup by itself */

replace G in \Pi_{new} by the set of all subgroups formed;
```

Minimizing the DFA

■ DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}),其中δ见表

성영중은 다고 있다고 갔다고 감독을 사망했다. 한다고 있다.			STATISTICS AND STREET STATISTICS AND					
states	а	b		States	parti tion	а	b	
0	1	2	Step 1: A={0 1} B={2 3 4 5}	0	А	1(A)	2(B)	
1	1	4	Λ-(0,1), D-(2,0,4,0)°	1	А	1(A)	4(B)	
2	1	3		2	В	1(A)	3(B)	
3	3	2		3	В	3(B)	2(B)	
4	0	5		4	В	0(A)	5(B)	
5	5	4		5	В	5(B)	4(B)	

Major operation: partition states into equivalent classes according to: final / non-final states; transition functions

Minimizing the DFA

DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}),

stat es	parti tion	а	b	2002200
0	А	1(A)	2(B)	
1	А	1(A)	4(B)	
2	В	1(A)	3(B)	C. SUPPLY
3	В	3(B)	2(B)	
4	В	0(A)	5(B)	
5	В	5(B)	4(B)	

sta	а	b	
tes 0	1	2	
1	1	4	
2	1	3	
3	3	2	
4	0	5	
5	5	4	

Cannot be divided any more							
	stat es	partit ion	а	b			
	0	А	1(A)	2(B)			
	1	А	1(A)	4(B)			
	2	В	1(A)	3(C)			
	3	С	3(C)	2(B)			
	4	В	0(A)	5(C)			
	5	С	5(C)	4(B)			

Minimizing the DFA

DFA D=({0,1,2,3,4,5}, {a,b}, δ, 0, {0,1}) is minimized to: DFA D[']=({A,B,C}, {a,b}, δ, A, {A}), where δ is defined as follows

state	а	b	
А	А	В	
В	А	С	
С	С	В	

Minimizing the DFA-Example

Is {A,B,C,D} dividable?

r=(a|b)*abb

What happens when take in b under {A,B,C,D}? --- becomes {A,B,C}, {D}

initially, two sets {1, 2, 3, 5, 6}, {4, 7}.
{1, 2, 3, 5, 6} splits {1, 2, 5}, {3, 6} on c.
{1, 2, 5} splits {1}, {2, 5} on b.

RE v.s. NFA/DFA

RE, DFA(NFA), L(RE) are equivalent to each other

Exercise

start

Given an NFA N

(1) Simulate the NFA on input "aaabb"

(2) Convert the NFA N to its equivalent DFA M

(3) Minimize the DFA M

(4) Describe what can this DFA/NFA accept in natural language

(5) Write down the regular expression re, such that L(re) = L(N)

Homework-W3

Homework – week 3

- pp. 125, Exercise 3.3.5 (c)(d)(f)(h)
- pp.152, Exercise 3.6.5
- pp. 166, Exercise 3.7.1 (b), Exercise 3.7.2 (b), Exercise 3.7.3 (d)
- pp. 172, Exercise 3.8.1
- pp.187, Exercise 3.9.4

Lexical Analyzer Implementation

Overview

- Writing a compiler is difficult requiring lots of time and effort
- Construction of the scanner and parser is routine enough that the process may be automated

Overview

LEX

- Lex is a scanner generator
 - Input is description of patterns and actions
 - Output is a C program which contains a function yylex() which, when called, matches patterns and performs actions per input
 - Typically, the generated scanner performs lexical analysis and produces tokens for the (YACC-generated) parser
YACC

• What is YACC ?

- Tool which will produce a parser for a given grammar.
- YACC (Yet Another Compiler Compiler) is a program designed to compile a LALR(1) grammar and to produce the source code of the syntactic analyzer of the language produced by this grammar
- Input is a grammar (rules) and actions to take upon recognizing a rule
- Output is a C program and optionally a header file of tokens

LEX and YACC: a team

Availability

- lex, yacc on most UNIX systems
- bison: a yacc replacement from GNU
- flex: fast lexical analyzer
- BSD yacc
- Windows/MS-DOS versions exist

Structure of Lex source file

yyleng: length of the lexeme

scanner.1

Example: LEX

8{	
#include	<stdio.h></stdio.h>
#include	"y.tab.h"
8}	
id	[_a-zA-Z][_a-zA-Z0-9]*
wspc	[\t\n]+
semi	[;]
comma	[,]
88	
int	{ return INT; }
char	{ return CHAR; }
float	{ return FLOAT; }
{comma}	{ return COMMA; }
{semi}	{ return SEMI; }
{id}	{ return ID; }
{wspc}	{ ; }

/* Necessary? */

Example: Definitions

decl.y

```
8{
#include <stdio.h>
#include <stdlib.h>
8}
%start line
%token CHAR, COMMA, FLOAT, ID, INT, SEMI
88
```

Example: Rules

decl.y

/* This production is not part of the "official"
 * grammar. It's primary purpose is to recover from
 * parser errors, so it's probably best if you leave
 * it here. */

```
line : /* lambda */
| line decl
| line error {
    printf("Failure :-(\n");
    yyerrok;
    yyclearin;
    }
```

Example: Rules

decl.y

decl : type ID list { printf("Success!\n"); } ;

list : COMMA ID list | SEMI

;

88

; type : INT | CHAR | FLOAT

Example: Supplementary Code

extern FILE *yyin;

main()
{

}

{

}

do {

yyparse();
} while(!feof(yyin));

yyerror(char *s)

/* Don't have to do anything! */

Next Time

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

Machine Code

