
Lecture 5: Syntax Analysis

Xiaoyuan Xie 谢晓园
xxie@whu.edu.cn
计算机学院E301

2018/10/20 2

Syntax Analysis

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

3

Source
Code

Machine
Code

Where are we ?

4

Where is Syntax Analysis Performed?

abstract syntax
tree or parse tree

Lexical Analyzer

if (b == 0) a = b;

if (b == 0) a = b ;

Syntax Analysis or Parsing

if

== =

b 0 a b

5

Parsing Analogy
• Syntax analysis for natural languages

- Recognize whether a sentence is grammatically
correct

- Identify the function of each word

sentence

subject verb indirect object object

I gave him noun phrase

article noun

bookthe

“I gave him the book”

Parsing During Compilation

• Parser works on a stream of tokens.
• The smallest item is a token.

IR

errors

lexical
analyzer

parser
rest of

front end

symbol
table

source
program

parse
treeget next

token

token

6

Regular
Expressions

• Using a grammar(CFG) to
check structure of tokens

• Produce a parse tree
• Recognize correct syntax
• Syntactic errors and recovery
• Reprot errors

• Also technically part of
parsing

• Includes augmenting info on
tokens in source, type
checking, semantic analysis

Error Processing

• Detecting errors

• Finding position at which they occur

• Clear / accurate presentation

• Recover (pass over) to continue and find

later errors

7

8

Syntax Analysis Overview

• Goal – Determine if the input token stream satisfies

syntax of the program

• What do we need to do this?

– An expressive way to describe the syntax

– A mechanism that determines if the input token stream

satisfies the syntax description

9

Syntax Analysis Overview

For lexical analysis

– Regular expressions describe tokens

– Finite automata = mechanisms to generate tokens from input

stream

For syntax analysis

– Concrete and Abstract Syntax Trees: formalisms for syntax

analysis

– PushDown Automaton (PDA): top-down parsing, bottom-up

parsing

Language Recognition Problem

• Let a language L be any set of some arbitrary objects
s which will be dubbed “sentences.”
– “legal” or “grammatically correct” sentences of the language.

• Let the language recognition problem for L be:
– Given a sentence s, is it a legal sentence of the language L?

• That is, is sL?

Intro to Languages

11

• English grammar tells us if a given combination of words is a valid
sentence.

The syntax of a sentence concerns its form while the semantics concerns its meaning.
e.g. the mouse wrote a poem

From a syntax point of view this is a valid sentence.

From a semantics point of view not so…perhaps in Disneyland

Natural languages (English, French, Portguese, etc) have very complex
rules of syntax and not necessarily well-defined.

Formal Language

12

• An alphabet is a set Σ of symbols that act as letters.

• A language over Σ is a set of strings made from symbols in
Σ.

• Formal language – is specified by well-defined set of rules
of syntax

• We describe the sentences of a formal language using a
grammar.

Grammars

• A formal grammar G is any compact, precise
mathematical definition of a language L.
– As opposed to just a raw listing of all of the

language’s legal sentences, or just examples of them.

• A grammar implies an algorithm that would
generate all legal sentences of the language.
– Often, it takes the form of a set of recursive definitions.

• A popular way to specify a grammar recursively
is to specify it as a phrase-structure grammar.

Grammars (Semi-formal)

14

• Example: A grammar that generates a subset of
the English language

verbpredicate

nounarticlephrasenoun

predicatephrasenounsentence

_

_

15

sleepsverb

runsverb

dognoun

boynoun

thearticle

aarticle

16

• A derivation of “the boy sleeps”:

sleepsboythe

verbboythe

verbnounthe

verbnounarticle

verbphrasenoun

predicatephrasenounsentence

_

_

17

• A derivation of “a dog runs”:

runsdoga

verbdoga

verbnouna

verbnounarticle

verbphrasenoun

predicatephrasenounsentence

_

_

18

• Language of the grammar:

L = { “a boy runs”,
“a boy sleeps”,
“the boy runs”,
“the boy sleeps”,
“a dog runs”,
“a dog sleeps”,
“the dog runs”,
“the dog sleeps” }

Notation

19

•

dognoun

boynoun

Variable
or

Non-terminal

Symbols of
the vocabulary

Terminal
Symbols of
the vocabulary

Production
rule

Phrase-Structure Grammars
• A phrase-structure grammar (abbr. PSG)

G = (V,T,S,P) is a 4-tuple, in which:
– V is a vocabulary (set of symbols)

• The “template vocabulary” of the language.

– T V is a set of symbols called terminals
• Actual symbols of the language.

– N :≡ V − T is a set of special “symbols” called
nonterminals. (Representing concepts like “noun”)

– SN is a special nonterminal, the start symbol.
• in our example the start symbol was “sentence”.

– P is a set of productions (to be defined).
• Rules for substituting one sentence fragment for another
• Every production rule must contain at least one nonterminal on its

left side.

Phrase-structure Grammar

► EXAMPLE:

 Let G = (V, T, S, P),

where V = {a, b, A, B, S}

 T = {a, b},

S is a start symbol

 P = {S → ABa, A → BB, B → ab, A → Bb}.

What sentences can be generated
with this grammar?

Derivation

• Let G=(V,T,S,P) be a phrase-structure grammar.

• Let w0=lz0r (the concatenation of l, z0, and r) w1=lz1r be strings over V.

• If z0 z1 is a production of G we say that w1 is directly derivable from w0
and we write wo => w1.

• If w0, w1, …., wn are strings over V such that w0 =>w1,w1=>w2,…, wn-1 => wn,
then we say that wn is derivable from w0, and write w0=>*wn.

• The sequence of steps used to obtain wn from wo is called a derivation.

Language

23

• Let G(V,T,S,P) be a phrase-structure grammar.
The

• language generated by G (or the language of G)

• denoted by L(G) , is the set of all strings of
terminals

• that are derivable from the starting state S.

• L(G)= {w T* | S =>*w}

Language L(G)

► EXAMPLE:

• Let G = (V, T, S, P), where V = {a, b, A, S}, T = {a, b}, S is a
start symbol and P = {S → aA, S → b, A → aa}.

• The language of this grammar is given by L (G) = {b, aaa};

1. we can derive aA from using S → aA, and then derive aaa using
A → aa.

2. We can also derive b using S → b.

25

• Language of the grammar with the
productions:

}0:{ nbaL nn

S → aSb, S → ε

• Type 2: Context-Free PSG:
– All before fragments have length 1 and are

nonterminals: P：A，where AN，V*。

• Type 3: Regular PSGs:
– All before fragments have length 1 and nonterminals

– All after fragments are either single terminals, or a pair
of a terminal followed by a nonterminal.

either A B， A or, A B， A
where A，BN，T*。

Types of Grammars -
Chomsky hierarchy of languages

Types of Grammars -
Chomsky hierarchy of languages

• Venn Diagram of Grammar Types:

Type 0 – Phrase-structure Grammars
Type 1 –

Context-Sensitive

Type 2 –
Context-Free

Type 3 –
Regular

The Limits of Regular Languages

• When scanning, we used regular expressions to define
each token.

• Unfortunately, regular expressions are (usually) too weak
to define programming languages.

- Cannot define a regular expression matching all
expressions with properly balanced parentheses.

- Cannot define a regular expression matching all functions
with properly nested block structure (blocks, expressions,
statements)

We need a more powerful formalism.

28

29

Context Free Grammars

• A context-free grammar (or CFG) is a
formalism for defining languages.

• Can define the context-free languages, a
strict superset of the the regular languages.

30

Context-Free Grammars

• Inherently recursive structures of a programming language are
defined by a context-free grammar.

• In a context-free grammar, we have:

– A finite set of terminals (in our case, this will be the set of
tokens)

– A finite set of non-terminals (syntactic-variables)

– A finite set of productions rules in the following form

• A where A is a non-terminal and is a string of
terminals and non-terminals (including the empty
string)

– A start symbol (one of the non-terminal symbol)

31

Example Grammar

expr expr op expr

expr (expr)

expr - expr

expr id

op +

op -

op *

op /

Black : Nonterminal

Blue : Terminal

expr : Start Symbol

8 Production rules

32

Terminology

• L(G) is the language of G (the language generated by G) which is a set
of sentences.

• A sentence of L(G) is a string of terminal symbols of G.

• If S is the start symbol of G then

 is a sentence of L(G) if S where is a string of terminals of G.

• A language that can be generated by a grammar is said to be a context-
free language.

• If G is a context-free grammar, L(G) is a context-free language.

• Two grammars are equivalent if they produce the same language.

• S *
– If contains non-terminals, it is called as a sentential form of G.

– If does not contain non-terminals, it is called as a sentence of G.

+

33

id * id is a sentence

Here’s the derivation:

exp exp op exp exp * exp id * exp id * id

SentenceSentential forms

exp * id * id

Terminology

EX. E E+E id+E id+id

• Capital letters at the beginning of the
alphabet will represent nonterminals.

• i.e. A, B, C, D

• Lowercase letters at the end of the
alphabet will represent terminals.

• i.e. t, u, v, w

• Lowercase Greek letters will represent
arbitrary strings of terminals and nonterminals.

• i.e. α, γ, ω

S ome CFG Notation

34

35

Examples

• We might write an arbitrary production as

A ω

• We might write a string of a nonterminal followed by a
terminal as

At

• We might write an arbitrary production containing a
nonterminal followed by a terminal as

B αAtω

36

Derivations

• The central idea here is that a production is treated as a
rewriting rule in which the non-terminal on the left is replaced
by the string on the right side of the production.

• E E+E E+E derives from E

– we can replace E by E+E

– to able to do this, we have to have a production rule EE+E
in our grammar.

• E E+E id+E id+id

• A sequence of replacements of non-terminal symbols is called
a derivation of id+id from E.

• In general a derivation step is

• 1 2 ... n (n derives from 1 or 1 derives n)

expr expr op expr

expr (expr)

expr - expr

expr id

op +

op -

op *

op /
Black : Nonterminal

Blue : Terminal

expr : Start Symbol
37

A Notational Shorthand

expr expr op expr

| (expr)

| - expr

| id

op + | - | * | /

38

CFG for Programming Language

program stmt-sequence

stmt-sequence stmt-sequence ; statement
| statement

Statement if-stmt
| repeat-stmt

| assign-stmt
| read-stmt
| write-stmt

if-stmt if exp then stmt-sequence end
| if exp then stmt-sequence else

stmt-sequence end

39

Other Derivation Concepts

• At each derivation step, we can choose any of the non-terminal in the
sentential form of G for the replacement.

• If we always choose the left-most non-terminal in each derivation step,
this derivation is called as left-most derivation.

• If we always choose the right-most non-terminal in each derivation step,
this derivation is called as right-most derivation.

40

Left-Most and Right-Most Derivations

• Left-Most Derivation

E -E -(E) -(E+E) -(id+E) -(id+id)

• Right-Most Derivation (called canonical derivation

E -E -(E) -(E+E) -(E+id) -(id+id)

• We will see that the top-down parsers try to find the left-most
derivation of the given source program.

• We will see that the bottom-up parsers try to find the right-most
derivation of the given source program in the reverse order.

