Lecture 6: Syntax Analysis (cont.)

Xiaoyuan Xie 谢晓园 xxie@whu.edu.cn 计算机学院E301

Syntax Analysis

Where are we?

Derivations Revisited

- A derivation encodes two pieces of information:
 - -What productions were applied to produce the resulting string from the start symbol?
 - -In what order were they applied?
- Multiple derivations might use the same productions, but apply them in a different order.

Derivation exercise 1

Productions:

- assign_stmt \rightarrow id := expr;
- $expr \rightarrow expr op term$
- $expr \rightarrow term$
- *term* \rightarrow *id* Let's derive:
- term \rightarrow real id := id + real integer ;
- term \rightarrow integer Please use left-most derivation
- $op \rightarrow +$
- $op \rightarrow -$

id := id + real - integer ;

Left-most derivation: assign_stmt \Rightarrow id := expr; \Rightarrow id := expr op term ; \Rightarrow id := expr op term op term ; \Rightarrow id := term op term op term; \Rightarrow id := id op term op term; \Rightarrow id := id + term op term ; \Rightarrow id := id + real op term ; \Rightarrow id := id + real - term ; \Rightarrow id := id + real - integer;

Using production: assign stmt \rightarrow id := expr; $expr \rightarrow expr op term$ $expr \rightarrow expr op term$ $expr \rightarrow term$ term \rightarrow id $op \rightarrow +$ term \rightarrow real $op \rightarrow$ $term \rightarrow integer$

Parse Trees

- A parse tree is a tree encoding the steps in a derivation.
- Internal nodes represent nonterminal symbols used in the production.
- Inorder walk of the leaves contains the generated string.
- Encodes what productions are used, not the order in which those productions are applied.

Parse Tree

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.
- A parse tree can be seen as a graphical representation of a derivation.

EX. $E \Rightarrow -E \Rightarrow -(E) \Rightarrow -(E+E) \Rightarrow -(id+E) \Rightarrow -(id+id)$

 $E \rightarrow E \text{ op } E | (E) | -E | id$ op $\rightarrow + | - | * | /$

> $E \Rightarrow E \text{ op } E$ \Rightarrow id op E \Rightarrow id + E \Rightarrow id + E op E \Rightarrow id + id op E \Rightarrow id + id * E \Rightarrow id + id * id

Parse Trees and Derivations (cont.)

$id + E * E \Rightarrow id + id * E$

id + id * E \Rightarrow id + id * id

Ε

Alternative Parse Tree & Derivation

 $E \Rightarrow E * E$ $\Rightarrow E + E * E$ $\Rightarrow id + E * E$ $\Rightarrow id + id * E$ $\Rightarrow id + id * id$

WHAT'S THE ISSUE HERE ?

Two distinct leftmost derivations!

Ę

id

F

Challenges in Parsing

Ambiguity

• A grammar produces more than one parse tree for a sentence is called as an *ambiguous* grammar.

Is Ambiguity a Problem?

Depends on semantics.

Resolving Ambiguity

- If a grammar can be made unambiguous at all, it is usually made unambiguous through layering.
 - Have exactly one way to build each piece of the string?
 - Have exactly one way of combining those pieces back together?

Resolving Ambiguity

- For the most parsers, the grammar must be unambiguous.
- unambiguous grammar
 - ➔ unique selection of the parse tree for a sentence
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.

Ambiguity – Operator Precedence

Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the **precedence** and **associativity** rules.

 $E \rightarrow E+E \mid E^*E \mid E^*E \mid id \mid (E)$ disambiguate the grammar precedence: ^ (right to left) * (left to right) + (left to right) $E \rightarrow E+T | T$ $T \rightarrow T^*F | F$ $F \rightarrow G^*F | G$ $G \rightarrow id | (E)$

Rewrite to eliminate the ambiguity

Or, simply tell which parse tree should be selected

- Syntax analyzers (parsers) = CFG acceptors which also output the corresponding derivation when the token stream is accepted
- Various kinds: LL(k), LR(k), SLR, LALR

Types

- Top-Down Parsing
 - Recursive descent parsing
 - Predictive parsing
 - LL(1) Pottom Lln Doroing
- Bottom-Up Parsing
 - Shift-Reduce Parsing
 - LR parser

Homework

Page 206: Exercise 4.2.1 Page 207: Exercise 4.2.2 (d) (f) (g)

Top-Down Parsing

Two Key Points

$\begin{array}{rcccc} expression & \rightarrow & expression - term \\ expression & \rightarrow & term \\ & term & \rightarrow & term * factor \\ & term & \rightarrow & term / factor \\ & term & \rightarrow & factor \\ & factor & \rightarrow & (expression) \\ & factor & \rightarrow & \mathbf{id} \end{array}$	expression expression expression term term factor factor factor	* * * * * * * * *	expression + term expression - term term term * factor term / factor factor (expression) id
--	--	-------------------	--

expression => term
=> term*factor

=> term/factor*factor

- Q1: Which non-terminal to be replaced? Leftmost derivation $S \stackrel{*}{\rightarrow}_{lm} \alpha$

– Q2: Which production to be used?

Top-Down Parsing

The parse tree is created top to bottom (from root to leaves). By always replacing the leftmost non-terminal symbol via a production rule, we are guaranteed of developing a parse tree in a left-to-right fashion that is consistent with scanning the input.

An illustration with PDA

D	Reading Head	Stack	Analysis	Derivation	Match?
P: (1) $Z \rightarrow aBeA$ (2) $A \rightarrow Bc$	abec	Z	Z production starting with a? - (1)	^g aBeA	a
$(3) B \rightarrow d$ $(4) B \rightarrow bB$ $(5) B \rightarrow s$	bec	BeA	B production starting with b? $-(4)$	g <mark>b</mark> BeA	b
a b e c	ec	BeA	B production starting with e? -(5)	εeA	e
	С	A	A production starting with c? $-(2)(5)$	<u>,</u>	

An illustration with PDA

Р	:	Reading Head	Stack	Analysis	Derivation	Match?
() (2 (3	1) $Z \rightarrow aBeA$ 2) $A \rightarrow Bc$ 3) $B \rightarrow d$	С	Α	A production starting with c?-((2) Bc	
(4 (5	$\begin{array}{c} 4) \mathbf{B} \rightarrow \mathbf{b} \mathbf{B} \\ 5) \mathbf{B} \rightarrow \mathbf{\epsilon} \end{array}$	С	Bc	A production star with c? - (5)	ting ^{EC}	C
a 1-	b e c	 →				

Problem - Backtraking

- General category of Top-Down Parsing
- Choose production rule based on input symbol
- May require backtracking to correct a wrong choice.

•Example: $S \rightarrow c A d$ $A \rightarrow ab | a$

Problem – Left recursion

• A grammar is Left Recursion if it has a nonterminal A such that there is a derivation $A \Rightarrow^+ A\alpha$ for some string α .

Left Recursion + top-down parsing = infinite loop Eg. Term \rightarrow Term*Num

7	erm	
	\square	
Term	*	Num

Term Term * Num

Num Term *

Elimination of Left recursion

- $A \rightarrow A\alpha \mid \beta$ elimination of left recursion $P \rightarrow \beta P' \qquad P' \rightarrow \alpha P' \mid \epsilon$
- $\mathbf{P} \rightarrow \mathbf{P}\alpha_1 | \mathbf{P}\alpha_2 | \dots | \mathbf{P}\alpha_m^{-1} | \beta_1 | \beta_2 | \dots | \beta_n$
- elimination of left recursion $\begin{array}{c} P \rightarrow \beta_1 P' | \ \beta_2 P' | \dots | \ \beta_n P' \\ P' \rightarrow \alpha_1 P' | \ \alpha_2 P' | \dots | \ \alpha_m P' | \ \epsilon \end{array}$

Elimination of Left recursion (eg.)

Elimination of Left recursion (eg.)

- $P \rightarrow PaPb|BaP$
 - We have $\alpha = aPb, \beta = BaP$
 - So, $P \rightarrow \beta P'$
 - $P' \rightarrow \alpha P' | \epsilon$
 - ・改写后: P→ BaPP' P'→ aPbP'|ε

 $A \rightarrow A\alpha_{1} \mid A\alpha_{2} \mid \cdots \mid A\alpha_{m} \mid \beta_{1} \mid \beta_{2} \mid \cdots \mid \beta_{n}$ $A \rightarrow \beta_{1}A' \mid \beta_{2}A' \mid \cdots \mid \beta_{n}A'$ $A' \rightarrow \alpha_{1}A' \mid \alpha_{2}A' \mid \cdots \mid \alpha_{m}A' \mid \epsilon$

Multiple P? Consider the most-left one.

Elimination of Indirect Left recursion

Direct: $S \rightarrow Sa$ Indirect: $S \rightarrow Aa, A \xrightarrow{+} Sb$, then we have $A \xrightarrow{+} Aab$ e.g: $S \rightarrow Aa \mid b, A \rightarrow Sd \mid \varepsilon$ $S \Rightarrow Aa => Sda$

Elimination of Left recursion algorithm

Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or ϵ -productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting non-left-recursive grammar may have ϵ -productions. \Box

```
1) arrange the nonterminals in some order A_1, A_2, ..., A_n.

2) for ( each i from 1 to n ) {

3) for ( each j from 1 to i - 1 ) {

4) replace each production of the form A_i \rightarrow A_j \gamma by the

productions A_i \rightarrow \delta_1 \gamma | \delta_2 \gamma | \cdots | \delta_k \gamma, where

A_j \rightarrow \delta_1 | \delta_2 | \cdots | \delta_k are all current A_j-productions

5) }

6) eliminate the immediate left recursion among the A_i-productions

7) }
```

Elimination of Left recursion (eg.)

$$S \rightarrow A b$$

$$A \rightarrow S a \mid b$$

1:S
2:A
$$A \rightarrow Aba \mid b$$

 $A \rightarrow bA'$
 $A' \rightarrow bA' \mid \varepsilon$
Elimination of Left recursion (eg.)

1:S
2:A

$$S \rightarrow Aa \mid b,$$

 $A \rightarrow Ac \mid Aad \mid bd \mid \epsilon$
 $S \rightarrow Aa \mid b,$
 $A \rightarrow bdA' \mid A'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Elimination of Left recursion (eg.)

$S \rightarrow Qc \mid$	c
$\mathbf{Q} \rightarrow \mathbf{Rb}$	b
$\mathbf{R} \rightarrow \mathbf{S} \mathbf{a}$	a

1:S
2:Q
3:R
$S \rightarrow Qc \mid c$
$\mathbf{Q} \rightarrow \mathbf{Rb} \mid \mathbf{b}$
$R \rightarrow Sa \mid a$
\rightarrow (Qc c)a a
→Qca ca a
→(Rb b)ca ca a
$S \rightarrow Oc \mid c$
$0 \rightarrow Rh \mid h$
$R \rightarrow (hca ca a)R'$
$R' \rightarrow hcaR' c$

Elimination of Left recursion (eg.)

$S \rightarrow Qc \mid c$	
$\mathbf{Q} \rightarrow \mathbf{Rb} \mid \mathbf{b}$	
$\mathbf{R} \rightarrow \mathbf{S} \mathbf{a} \mid \mathbf{a}$	

1:R
2:Q
3:S
$\mathbf{R} \rightarrow \mathbf{Sa} \mid \mathbf{a}$
$\mathbf{Q} \rightarrow \mathbf{Rb} \mid \mathbf{b} \rightarrow \mathbf{Sab} \mid \mathbf{ab} \mid \mathbf{b}$
$S \rightarrow Qc \mid c \rightarrow Sabc \mid abc \mid bc \mid c$
$S \rightarrow (abc bc c)S'$
$S' \rightarrow abcS' \varepsilon$

- $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$ $A \rightarrow \alpha A'$ $A' \rightarrow \beta_1 \mid \beta_2$
- $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \mid \dots \mid \alpha \beta_n \mid \gamma$ $A \rightarrow \alpha A' \mid \gamma$ $A' \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta_n$

Algorithm 4.21: Left factoring a grammar.

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ — i.e., there is a nontrivial common prefix — replace all of the A-productions $A \rightarrow \alpha \beta_1 | \alpha \beta_2 | \cdots | \alpha \beta_n | \gamma$, where γ represents all alternatives that do not begin with α , by

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix. \Box

- E.g
 - $-S \rightarrow iEtS \mid iEtSeS \mid a$ $E \rightarrow b$
 - For, S, the longest pre-fix is *iEtS*, Thus, $S \rightarrow iEtSS' \mid a$ $S' \rightarrow eS \mid \varepsilon$ $E \rightarrow b$

• E.g. G: (1) $S \rightarrow aSb$ For (1), (2), extract the left factor: (2) $S \rightarrow aS$ $S \rightarrow aS(b|\epsilon)$ (3) $S \rightarrow \varepsilon$ $S \rightarrow \varepsilon$ We have G': S→aSA A→b A→ε $S \rightarrow \epsilon$

Homework

Page 216: Exercise 4.3.1

44

Two Parsing Methods

A Naïve Method

Recursive-Descent Parsing

- Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
- It is a general parsing technique, but not widely used.
- Not efficient

Recursive-Descent Parsing

void A() { Choose an A-production, $A \to X_1 X_2 \cdots X_k$; 1 2for (i = 1 to k)if $(X_i \text{ is a nonterminal})$ 3 call procedure $X_i()$; else if (X_i equals the current input symbol a) 5advance the input to the next symbol; 6 else /* an error has occurred */;

A typical procedure for a nonterminal in a top-down parse

Recursive-Descent Parsing

• Example

Z() if (token == a) match(a); { **B()**; match(d); else error(); void main()

{read();

Z(); }

B()

case token of
d: match(d);break;
c: match(c); break;
b:{ match(b);
 B(); break;}
other: error();

A Non-Recursive Method

- Predictive Parsing

- no backtracking, efficient
- needs a special form of grammars (LL(1) grammars).
- Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

A Non-Recursive Method

- -Predict(A $\rightarrow \alpha$)
- -First(α) -Follow(A)

FIRST Set

FIRST(α)

If α is any string of grammar symbols, let FIRST(α) be the set of terminals that begin the strings derived from α . If $\alpha \Rightarrow \varepsilon$ then ε is also in FIRST(α).

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ε can be added to any FIRST set:

- 1. If X is terminal, then FIRST(X) is $\{X\}$.
- 2. If $X \to \varepsilon$ is a production, then add ε to FIRST(X).

3. If X is nonterminal and $X \rightarrow Y_1 Y_2 \dots Y_k$ is a production, then place *a* in FIRST(X) if for some *i*, *a* is in FIRST(Y_i), and ε is in all of FIRST(Y₁), ..., FIRST(Y_{i-1}); that is, Y₁, ..., Y_{i-1} $\Rightarrow \varepsilon$. If ε is in FIRST(Y_j) for all *j* = 1, 2, ..., *k*, then add ε to FIRST(X). For example, everything in FIRST(Y₁) is surely in FIRST(X). If Y₁ does not derive ε , then we add nothing more to FIRST(X), but if Y₁ $\Rightarrow \varepsilon$, then we add FIRST(Y₂) and so on.

Now, we can compute FIRST for any string $X_1X_2 \ldots X_n$ as follows. Add to FIRST $(X_1X_2 \ldots X_n)$ all the non- ε symbols of FIRST (X_1) . Also add the non- ε symbols of FIRST (X_2) if ε is in FIRST (X_1) , the non- ε symbols of FIRST (X_3) if ε is in both FIRST (X_1) and FIRST (X_2) , and so on. Finally, add ε to FIRST $(X_1X_2 \ldots X_n)$ if, for all *i*, FIRST (X_i) contains ε .

Motivation Behind FIRST

- Is used to help find the appropriate reduction to follow given the top-of-the-stack nonterminal and the current input symbol.
- If $A \rightarrow \alpha$, and a is in FIRST(α), then when a=input, replace A with α . (a is one of first symbols of α , so when A is on the stack and a is input, POP A and PUSH α .)

Example:

 $\begin{array}{l} \mathsf{A} \rightarrow \mathsf{a}\mathsf{B} \mid \mathsf{b}\mathsf{C} \\ \mathsf{B} \rightarrow \mathsf{b} \mid \mathsf{d}\mathsf{D} \\ \mathsf{C} \rightarrow \mathsf{c} \\ \mathsf{D} \rightarrow \mathsf{d} \end{array}$

Define FOLLOW(A), for nonterminal A, to be the set of terminals *a* that can appear immediately to the right of A in some sentential form, that is, the set of terminals *a* such that there exists a derivation of the form $S \Rightarrow \alpha A a \beta$ for some α and β . Note that there may, at some time during the derivation, have been symbols between A and *a*, but if so, they derived ε and disappeared. If A can be the rightmost symbol in some sentential form, then \$, representing the input right endmarker, is in FOLLOW(A).

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set:

- 1. Place \$ in FOLLOW(S), where S is the start symbol and \$ is the input right endmarker.
- 2. If there is a production $A \Rightarrow \alpha B\beta$, then everything in FIRST(β), except for ϵ , is placed in FOLLOW(B).
- 3. If there is a production $A \Rightarrow \alpha B$, or a production $A \Rightarrow \alpha B\beta$ where FIRST(β) contains ϵ (i.e., $\beta \Rightarrow \epsilon$), then everything in FOLLOW(A) is in FOLLOW(B).

FOLLOW Set Example

F	First(X)		Follow(X)			
E	{i, n , (}		E	{ # ,)}		
E'	{ + , ε }		Ε′	{#,)}		
Т	{ i, n , (}		Т	{+,), #}		
T'	{ *, ε }		Τ'	{+, }, #}		
F	{ i, n , (}		F	{*, +,), #}		

Motivation Behind FOLLOW

- Is used when FIRST has a conflict, to resolve choices, or when FIRST gives no suggestion. When $\alpha \rightarrow \in$ or $\alpha \Rightarrow^* \varepsilon$, then what follows A dictates the next choice to be made.
- If $A \rightarrow \alpha$, and *b* is in FOLLOW(A), then when $\alpha \Rightarrow^* \varepsilon$ and *b* is an input character, then we expand A with α , which will eventually expand to ε , of which *b* follows! $(\alpha \Rightarrow^* \varepsilon : i.e., FIRST(\alpha) \text{ contains } \varepsilon.)$

Motivation Behind FOLLOW

$S = >^* \alpha A a \beta$

a is in Follow(A); c is in First(A)

Predict Set

- Predict(A $\rightarrow \alpha$)
 - Predict(A $\rightarrow \alpha$) = First(α), if $\epsilon \notin$ First(α);
 - Predict(A $\rightarrow \alpha$) = First(α)- { ϵ } \cup Follow(A), if $\epsilon \in First(\alpha)$;

Predict Set Example

r:	-	-	4	
	r	S	L	
	-			

Е	{i, n , (}
E '	{ + , ε }
T	{ i, n , (}
Τ'	{ *, ε }
F	{ i, n , (}

Fo	ollow
E	{#,)}
E '	{#, }}
Г	{+,), #}
Τ'	{+,), #}
F	{*, +,), #}

Now We consider LL(1)

Simple Predictive Parser: LL(1)

- Top-down, predictive parsing:
 - L: Left-to-right scan of the tokens
 - L: Leftmost derivation.
 - (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
- When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.

LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$
 - Both α and β cannot derive strings starting with same terminals.
 - $A \rightarrow \alpha_1 | \alpha_2 | \dots | \alpha_n, \quad \mathsf{FIRST}(\alpha_i) \cap \mathsf{FIRST}(\alpha_j) = \emptyset \quad (1 \le i \ne j \le n)$
 - At most one of α and β can derive to ϵ .
 - If β can derive to ε, then α cannot derive to any string starting with a terminal in FOLLOW(A).
 If ε∈FIRST(β), then FIRST(α) ∩ FOLLOW(A) = Ø

NOW predictive parsers can be constructed for LL(1) grammars since the proper production to apply for a nonterminal can be selected by looking only at the current input symbol.

Predictive Parser

eliminate left left recursion factor

a grammar \rightarrow \rightarrow a grammar suitable for predictive parsing (a LL(1) grammar) no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

Revisit LL(1) Grammar

LL(1) grammars

== there have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

- Grammar can't be ambiguous or left recursive
- Grammar is LL(1) \Leftrightarrow when $A \rightarrow \alpha \beta$

1, $\alpha & \beta$ do not derive strings starting with the same terminal a

2. Either α or β can derive ϵ , but not both.

Note: It may not be possible for a grammar to be manipulated into an LL(1) grammar

A Grammar which is not LL(1)

- A left recursive grammar cannot be a LL(1) grammar.
 - $A \rightarrow A\alpha \mid \beta$
 - any terminal that appears in FIRST(β) also appears FIRST(A α) because A $\alpha \Rightarrow \beta \alpha$.
 - If β is ϵ , any terminal that appears in FIRST(α) also appears in FIRST(A α) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Examples

• Example: $S \rightarrow c A d$ $A \rightarrow aa | a$

Left Factoring: $S \rightarrow c A d$ $A \rightarrow aB$ $B \rightarrow a \mid \epsilon$

• Example: $S \rightarrow Sa | *$

Eliminate left recursion: $S \rightarrow *B \quad B \rightarrow aB \mid \epsilon$

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.

- Symbol stack is used to store the intermeddle results for analysis
- When reaching the end of input stream; meanwhile the stack is empty, the string is accepted.
- LL(1) Analysis Table: T(A,a) indicates which production should be used for derivation.

LL(1) Analysis Table

	a ₁	 a _n	#
A ₁			-
Am			

For LL(1) grammar $G = (V_N, V_T, S, P)$ $V_T = \{a1, ..., an\}, V_N = \{A1, ..., Am\}$

LL(Ai, aj) = Ai $\rightarrow \alpha$, if aj \in predict(Ai $\rightarrow \alpha$) LL(Ai, aj) = error(\perp), if aj does not belong to any predict(Ai $\rightarrow \alpha$)

LL(1) Analysis Table

• Example 1

P: (1) $Z \rightarrow aBd$ (2) $B \rightarrow d$ (3) $B \rightarrow c$ (4) $B \rightarrow bB$

Production	Predict
(1)	{a}
(2)	{d}
(3)	{c}
(4)	{b}

	а	b	С	d	#
Ζ	(1)				-
В		(4)	(3)	(2)	

LL(1) Analysis Table

• Example 2:

(1) $E \rightarrow TE'$	{ i, n, (}		+	*	()	i	n	#
(2) $E' \rightarrow + TE'$	{+}	E							
(3) $E' \rightarrow \varepsilon$	{#,)}				(1)		(1)	(1)	
(4) $T \rightarrow FT'$	{i,n,(}	E '	(2)			(3)			(3)
(5) $T' \rightarrow * F T'$	{*}	Т	2010		(4)		(4)	(4)	
(6) $T' \rightarrow \varepsilon$	{),+, # }	Т,				(6)			(6)
(7) $F \rightarrow (E)$	{(}		(6)	(5)					(0)
(8) $F \rightarrow i$	{i}	F			(7)		(8)	(9)	
(9) F → n	{n}								
LL(1) Driver

METHOD: Initially, the parser is in a configuration with w\$ in the input buffer and the start symbol S of G on top of the stack, above \$.

set *ip* to point to the first symbol of w; set X to the top stack symbol; while $(X \neq \$)$ { /* stack is not empty */ if (X is a) pop the stack and advance ip; else if (X is a terminal) error(); else if (M[X, a] is an error entry) error(); else if $(M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k)$ { output the production $X \to Y_1 Y_2 \cdots Y_k$; pop the stack; push $Y_k, Y_{k-1}, \ldots, Y_1$ onto the stack, with Y_1 on top; set X to the top stack symbol;

Figure 4.20: Predictive parsing algorithm

A complete example

• <u>LL1-example.pdf</u>

Homework

Page 231: Exercise 4.4.1 (b) (d) Exercise 4.4.3

Homework

 $T \rightarrow a[L] | a$ Given a grammar G(T), whose productions are: $L \rightarrow LL | T$ Where 'a' '[' ']' are terminal, T and L are non-terminal. T is the starting symbol.

(1) Please write down a left-most derivation for sentence "a[aa]"

- (2) Try to eliminate the left-recursion and left factor (let's denote the new grammar after this elimination as G').
- (3) For G', computer the First and Follow set of all non-terminal symbols;
- (4) Construct LL(1) parsing table, tell whether the new grammar G' is LL(1) or not.
- (5) Write down the process for analyzing "a[a]" with your LL(1) table.