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Syntax Analysis
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Source
Code

Machine
Code

Where are we ?
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Derivations Revisited

• A derivation encodes two pieces of information:

What productions were applied to produce the 
resulting string from the start symbol?

In what order were they applied? 

• Multiple derivations might use the same productions, 
but apply them in a different order.
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Derivation exercise 1 

Productions:

assign_stmt  id := expr ;

expr  expr op term

expr  term

term  id

term  real

term  integer

op  +

op  -

Let’s derive:

id := id + real – integer ;

Please use left-most derivation



assign_stmt assign_stmt  id := expr ;

 id := expr ; expr  expr op term

 id := expr op term ; expr  expr op term

 id := expr op term op term ; expr  term

 id := term op term op term ; term  id

 id := id op term op term; op  +

 id := id + term op term ; term  real

 id := id + real op term ; op  -

 id := id + real - term ; term  integer

 id := id + real - integer; 

id := id + real – integer ;

Using production:Left-most derivation:
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Parse Trees

• A parse tree is a tree encoding the steps in a 
derivation.

• Internal nodes represent nonterminal symbols used in 
the production.

• Inorder walk of the leaves contains the generated 
string.

• Encodes what productions are used, not the order in 
which those productions are applied.

7
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Parse Tree
• Inner nodes of a parse tree are non-terminal symbols.
• The leaves of a parse tree are terminal symbols.
• A parse tree can be seen as a graphical representation of 

a derivation.

EX. E  -E  -(E)  -(E+E)  -(id+E)  -(id+id)
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E  E op E

 id + E op E

 id op E

 id + E

 id + id op E

 id + id * E

 id + id * id 

id +

E

E op E

EE op

*id id
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E  E op E | ( E ) | -E | id

op  + | - | * | / 
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Parse Trees and Derivations

Consider the expression grammar:

E  E+E | E*E | (E) | -E | id

Leftmost derivations of     id + id * id   

E  E + E E + E  id + E

E

EE +

id

E

EE *

id + E  id + E * E

E

EE +

id

E

EE +



E

EE *

id + E * E  id + id * E 

E

EE +

id

id

id + id * E  id + id * id E

EE *

E

EE +

id

idid
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Parse Trees and Derivations (cont.)
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Alternative Parse Tree & Derivation

E  E * E

 E + E * E

 id + E * E

 id + id * E

 id + id * id

E

E E+

E

E E*

id

id id

WHAT’S THE ISSUE HERE ?

Two distinct leftmost derivations!



Challenges in Parsing
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Ambiguity

• A grammar produces more than one parse tree for a 
sentence is called as an ambiguous grammar.

E  E+E  id+E  id+E*E 
 id+id*E  id+id*id

E  E*E  E+E*E  id+E*E 
 id+id*E  id+id*id

E

id

E +

id

id

E

E

* E

E

E +

id E

E

* E

id id

two parse trees for id+id*id.



15

Is Ambiguity a Problem?

Depends on semantics.

E

id

E +

id

id

E

E

* E

E

E +

id E

E

* E

id id
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Resolving Ambiguity

• If a grammar can be made unambiguous at all, it 
is usually made unambiguous through layering.

• Have exactly one way to build each piece of the 
string?

• Have exactly one way of combining those pieces 
back together?
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• For the most parsers, the grammar must be unambiguous.

• unambiguous grammar 

•  unique selection of the parse tree for a sentence

• We should eliminate the ambiguity in the grammar during the 
design phase of the compiler.

Resolving Ambiguity
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Ambiguity – Operator Precedence

• Ambiguous grammars (because of ambiguous operators) can be 
disambiguated according to the precedence and associativity rules.

E  E+E  |  E*E  |  E^E  |  id |  (E)

disambiguate the grammar 

precedence:  ^   (right to left)

*   (left to right)

+   (left to right)

E  E+T  |  T
T  T*F  |  F
F  G^F  |  G
G  id |  (E)

Rewrite to eliminate the ambiguity

Or, simply tell which parse tree should be selected
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A Parser

Parser

Context free
grammar, G

Token stream, s
(from lexer)

Yes, if s in L(G)
No, otherwise

Error messages

• Syntax analyzers (parsers) = CFG acceptors which also 
output the corresponding derivation when the token stream 
is accepted

• Various kinds: LL(k), LR(k), SLR, LALR
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Types

• Top-Down Parsing

• Recursive descent parsing

• Predictive parsing

• LL(1)

• Bottom-Up Parsing

• Shift-Reduce Parsing

• LR parser
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Homework

Page 206: Exercise 4.2.1
Page 207: Exercise 4.2.2 (d) (f) (g)
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Top-Down Parsing



Two Key Points

– Q1: Which non-terminal to be replaced?

Leftmost derivation 

– Q2: Which production to be used?

expression => term 
=> term*factor 
=> term/factor*factor 
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Top-Down Parsing

The parse tree is created top to bottom (from root to leaves).
By always replacing the leftmost non-terminal 

symbol via a production rule, we are guaranteed of 
developing a parse tree in a left-to-right fashion that is 
consistent with scanning the input.



Pushdown Automaton



An illustration with PDA

P:
(1) Z  aBeA
(2) A  Bc
(3) B  d
(4) B  bB
(5) B  

a        b       e      c

Reading
Head Derivation

Zabec

Analysis

Z production starting 
with a？- (1)

Stack

aBeA

Match?

a

bec BeA B production starting 
with b？ -(4)

bBeA b

ec BeA B production starting 
with e？-(5)

eA e

c A A production starting 
with c? -(2)(5)



An illustration with PDA

P:
(1) Z  aBeA
(2) A  Bc
(3) B  d
(4) B  bB
(5) B  

a        b       e      c

Reading 
Head

Analysis

c A A production 
starting with c?-(2)

Bc

c Bc A production starting 
with c? -(5)

c c

Stack Derivation Match?
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Problem - Backtraking

• General category of Top-Down Parsing

• Choose production rule based on input symbol

• May require backtracking to correct a wrong choice.

•Example: S  c A d
A  ab | a

input:  cad
cad S

c dA

cad
S

c dA

a b

cad
S

c dA

a b Problem: backtrack

cad
S

c dA

a

cad
S

c dA

a



Problem – Left recursion

• A grammar is Left Recursion if it has a nonterminal A 
such that there is a derivation A + A for some string .

Term

Num*Term

Term
Term

Num*Term

Term

Num*

……

Left Recursion + top-down parsing = infinite loop
Eg. Term  Term*Num



• Eliminating Direct Left Recursion

βiαi*βiαi*

Elimination of Left recursion
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Elimination of Left recursion

• A  A |

elimination of left recursion

P P P  P|

• P P1| P2|…| P m | 1 | 2|… | n

• elimination of left recursion

P 1 P| 2 P|…| nP
P 1 P| 2 P|…| mP| 

1
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Elimination of Left recursion (eg.)

• G[E]:  E  E+T|T 
T  T*F|F
F  (E)| I

Elimination of Left Recursion

E   TE
E  +TE|
T   FT
T  *FT|
F   (E)| i



Elimination of Left recursion (eg.)

P PaPb|BaP
• We have α = aPb, β=BaP
• So, P βP’

P’ αP’|ε
• 改写后：P BaPP’

P’ aPbP’|ε

Multiple P? Consider the most-left one.
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Elimination of Indirect Left recursion

1

Direct：

Indirect： , , then we have 

e.g：S → Aa | b,   A → Sd |ε
S => Aa => Sda
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Elimination of Left recursion  algorithm



S A b
A  S a |  b

1:S
2:A

A  Aba | b

A  bA’
A’  baA’ | 

Elimination of Left recursion (eg.)



S → Aa | b,
A → Ac | Sd |ε

1:S
2:A

S → Aa | b,
A → Ac | Aad | bd |ε
S → Aa | b,
A →bdA’ | A’
A’ → cA’ | adA’ |ε

Elimination of Left recursion (eg.)



S  Qc | c
Q  Rb | b
R  S a |  a

1:S
2:Q
3:R
S  Qc | c
Q  Rb | b
R  Sa | a 
 (Qc|c)a | a 
Qca | ca |a 
(Rb|b)ca | ca | a

S  Qc | c
Q  Rb | b
R  (bca | ca | a)R’
R’  bcaR’ | 

Elimination of Left recursion (eg.)



S  Qc | c
Q  Rb | b
R  S a |  a

1:R
2:Q
3:S
R  Sa | a
Q  Rb | b  Sab | ab | b
S  Qc | c  Sabc | abc | bc | c

S  (abc | bc | c)S’
S’  abcS’ | 

Elimination of Left recursion (eg.)
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Problem - Left Factoring

• A  1 | 2

A A A  1 | 2

• A 1 | 2|… | n |

A A|
A 1 | 2|… | n
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Problem - Left Factoring



• E.g
– S iEtS | iEtSeS | a

Eb

– For, S, the longest pre-fix is  iEtS, Thus, 

S iEtSS’ | a

S’  eS| 
Eb

Problem - Left Factoring



• E.g. 
G：
(1) S→aSb
(2) S→aS
(3) S→ε

For (1)、(2)， extract the left factor：
S→ aS(b|ε)
S→ε

We have G′：
S→aSA
A→b
A→ε
S→ε

Problem - Left Factoring
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Homework

Page 216: Exercise 4.3.1
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Two Parsing Methods
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A Naïve Method
– Recursive-Descent Parsing

• Backtracking is needed (If a choice of a production rule does 
not work, we backtrack to try other alternatives.)

• It is a general parsing technique, but not widely used.

• Not efficient
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Recursive-Descent Parsing

A typical procedure for a nonterminal in a top-down parse



• Example

P:
(1) Z  aBd {a}
(2) B  d         {d}
(3) B  c         {c}
(4) B  bB {b}

Z ( )
{
if (token == a)
{   match(a);

B( );
match(d);

}
else error();
}

B ( )
{
case token of
d:  match(d);break;
c:   match(c); break;
b:{  match(b);

B( ); break;}
other: error();

}
a        b       c      d

void main()
{read();
Z();  }

Recursive-Descent Parsing
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A Non-Recursive Method

– Predictive Parsing

• no backtracking, efficient

• needs a special form of grammars (LL(1) grammars).

• Non-Recursive (Table Driven) Predictive Parser is also 

known as LL(1) parser.



– Predict(A )
– First()
– Follow(A)

A Non-Recursive Method



FIRST Set



E {i, n , ( }
E’ { + ,  }

T { i, n , ( }

T’ { *,  }

F {  i, n , ( }

P:
(1)  E  TE’
(2)  E’  + TE’
(3)  E’  
(4)  T  FT’
(5)  T’  * F T’
(6)  T’  
(7)  F  (E)
(8)  F  i
(9)  F  n

 First()

First(E’T’E) =？
First(T’E’)  = ？

S = {E’, T’}

First(E’T’E) = {+,*,i,n,(}
First(T’E’)  = {+,*,}

FIRST Example
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Motivation Behind FIRST

• Is used to help find the appropriate reduction 
to follow given the top-of-the-stack non-
terminal and the current input symbol.

• If  A   ,  and  a is in FIRST(), then when 
a=input,  replace A with . ( a is one of first 
symbols of , so when A is on the stack and a 
is input,  POP A and PUSH .)

Example: A  aB | bC
B  b |dD
C  c         
D  d         
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FOLLOW Set
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FOLLOW Set (cont.)



E {#, )}

E’ {#, )}

T {+, ), #}

T’ {+, ),  #}

F {*, +, ), #}

E {i, n , ( }
E’ { + ,  }
T { i, n , ( }

T’ { *,  }
F {  i, n , 

( }

First(X) Follow(X)
P:
(1)  E  TE’
(2)  E’  + TE’
(3)  E’  
(4)  T  FT’
(5)  T’  * F T’
(6)  T’  
(7)  F  (E)
(8)  F  i
(9)  F  n

FOLLOW Set Example
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Motivation Behind FOLLOW

• Is used when FIRST has a conflict, to 
resolve choices, or when FIRST gives no 
suggestion.  When    or  * ,  then 
what follows A  dictates the next choice to 
be made.

• If  A   ,  and  b is in FOLLOW(A ), then 
when  *  and b is an input character, 
then we expand A with  , which will 
eventually expand to , of which b follows!  
( *  : i.e.,  FIRST( ) contains .)



Motivation Behind FOLLOW

a is in Follow(A); c is in First(A)

S=>*αAaβ



Predict Set

• Predict(A  )
• Predict(A  ) = First(), if   First();

• Predict(A  ) = First()- {}  Follow(A), if  
First();



Predict Set Example

E {i, n , ( }
E’ { + ,  }
T { i, n , ( }
T’ {    *,  }
F {  i, n , ( }

P:
(1)  E  TE’
(2)  E’  + TE’
(3)  E’  
(4)  T  FT’
(5)  T’  * F T’
(6)  T’  
(7)  F  (E)
(8)  F  i
(9)  F  n

E {#, )}
E’ {#, )}
T {+, ), #}
T’ {+, ),  #}
F {*, +, ), #}

first

Follow

First(TE’)={i, n,( }

First(+TE’)={+}
Follow(E’)={#, )}
First(FT’)={i,n,(}
First(*FT’)={*}
Follow(T’)={),+, # }
First((E))={ ( }

First(i)={i}

First(n)={n}



Now We consider LL(1)
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Simple Predictive Parser: LL(1)

• Top-down, predictive parsing:
– L: Left-to-right scan of the tokens

– L: Leftmost derivation.

– (1): One token of lookahead

• Construct a leftmost derivation for the sequence of 
tokens.

• When expanding a nonterminal, we predict the 
production to use by looking at the next token of 
the input. The decision is forced.
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LL(1) Grammars

• A grammar G is LL(1) if and only if  the following conditions 
hold for two distinctive production rules A   and   A  
– Both  and  cannot derive strings starting with same 

terminals. 

A 1| 2|…| n,    FIRST(i)  FIRST(j) =  (1ijn)

– At most one of  and  can derive to .
– If  can derive to , then  cannot derive to any string 

starting with a terminal in FOLLOW(A). 
If FIRST() ， then FIRST()  FOLLOW(A) = 

NOW predictive parsers can be constructed for LL(1) grammars since the proper 
production to apply for a nonterminal can be selected by looking only at the current 
input symbol. 
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Predictive Parser

a grammar     a grammar suitable for predictive
eliminate left parsing (a LL(1) grammar)

left recursion    factor no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive 
parser can uniquely choose a production rule by just looking the 
current symbol in the input string.

A  1 | ... | n input:  ... a .......

current token
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Revisit LL(1) Grammar

LL(1) grammars 

== there have no multiply-defined entries in the parsing 
table.

Properties of LL(1) grammars:

• Grammar can’t be ambiguous or left recursive
• Grammar is LL(1)  when A 

1.  &  do not derive strings starting with the  same 
terminal a

2. Either  or  can derive , but not both.

Note:  It may not be possible for a grammar to be 
manipulated into an LL(1) grammar
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A Grammar which is not LL(1)

• A left recursive grammar cannot be a LL(1) grammar.
– A  A | 

• any terminal that appears in FIRST()  also appears 
FIRST(A) because  A  .  

• If  is , any terminal that appears in FIRST() also 
appears in FIRST(A) and FOLLOW(A).

• A grammar is not left factored, it cannot be a LL(1) grammar
– A  1 | 2

• any terminal that appears in FIRST(1) also appears 
in FIRST(2).

• An ambiguous grammar cannot be a LL(1) grammar.
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Examples

• Example: S  c A d A  aa | a
Left Factoring:  S  c A d A  aB B  a | 

• Example： S Sa | 
Eliminate left recursion: S B     B  aB | 
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A Grammar which is not LL(1) (cont.)

• What do we have to do it if the resulting parsing table 
contains multiply defined entries?

– If  we didn’t eliminate left recursion, eliminate the left 
recursion in the grammar.

– If the grammar is not left factored, we have to left 
factor the grammar.

– If its (new grammar’s) parsing table still contains 
multiply defined entries, that grammar is ambiguous 
or it is inherently not a LL(1) grammar.



LL(1)

Symbol 
Stack

Input token stream

a

LL(1) Driver will handle
 Empty stack
 X VT

 X VN

X

LL[1]Analysis Table

 Symbol stack is used to store the intermeddle results for analysis

 When reaching the end of input stream; meanwhile the stack is empty, 
the string is accepted. 

 LL(1) Analysis Table: T(A,a) indicates which production should be used 
for derivation.

LL(1): a Predictive Parser



LL(1) Analysis Table

a1 … an #

A1

… …. …. …

Am

For LL(1) grammar G = (VN, VT, S, P)

VT = {a1, …, an}，VN = {A1, …, Am}

LL(Ai, aj) =  Ai , if aj predict(Ai )

LL(Ai, aj) = error(), if aj does not belong to any 
predict(Ai )



• Example 1

LL(1) Analysis Table

Production Predict
(1) {a}
(2) {d}
(3) {c}
(4) {b}

P:
(1) Z  aBd
(2) B  d
(3) B  c
(4) B  bB

a b c d #

Z (1)

B (4) (3) (2)



• Example 2：

(1)  E  TE’ { i, n, ( }
(2)  E’  + TE’ {+}
(3)  E’   {#, )}
(4)  T  FT’ {i,n,(}
(5)  T’  * F T’ {*}
(6)  T’   {),+, # }
(7)  F  (E) { ( }
(8)  F  i {i}
(9)  F  n {n}

+ * ( ) i n #

E

E’

T

T’

F

(1) (1) (1)

(2) (3)(3)

(4) (4)(4)

(5) (6)(6) (6)

(7) (8) (9)

LL(1) Analysis Table



LL(1) Driver
METHOD: Initially, the parser is in a configuration with w$ in the 
input buffer and the start symbol S of G on top of the stack, above $. 



• LL1-example.pdf

A complete example
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Homework

Page 231: Exercise 4.4.1 (b) (d)
Exercise 4.4.3
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Homework

Given a grammar G(T), whose productions are: 
Where ‘a’    ‘[‘   ‘]’ are terminal,   T and L are non-terminal. T is the starting symbol.

(1) Please write down a left-most derivation for sentence “a[aa]”
(2) Try to eliminate the left-recursion and left factor (let’s denote 

the new grammar after this elimination as G’). 
(3) For G’, computer the First and Follow set of all non-terminal 

symbols;
(4) Construct LL(1) parsing table, tell whether the new grammar G’ is 

LL(1) or not.
(5) Write down the process for analyzing “a[a]” with your LL(1) table.  

T  a[L] | a
L  LL | T


