Lecture 6：Syntax Analysis （cont．）

Xiaoyuan Xie 谢晓园
xxie＠whu．edu．cn
计算机学院E301

Syntax Analysis

Where are we ?

Derivations Revisited

- A derivation encodes two pieces of information:
-What productions were applied to produce the resulting string from the start symbol?
-In what order were they applied?
- Multiple derivations might use the same productions, but apply them in a different order.

Derivation exercise 1

```
Productions:
assign_stmt }->\mathrm{ id := expr;
expr }->\mathrm{ expr op term
expr }->\mathrm{ term
term }->\mathrm{ id
term }->\mathrm{ real
term }->\mathrm{ integer
op }->
op }->
```

Let's derive:
id := id + real - integer ;
Please use left-most derivation
id := id + real - integer ;

Left-most derivation:

assign_stmt
\Rightarrow id := expr ;
\Rightarrow id := expr op term ;
\Rightarrow id := expr op term op term ;
\Rightarrow id := term op term op term ;
\Rightarrow id := id op term op term;
\Rightarrow id := id + term op term ;
\Rightarrow id := id + real op term ;
\Rightarrow id := id + real - term ;
\Rightarrow id := id + real - integer;

Using production:

assign_stmt \rightarrow id := expr ;
expr \rightarrow expr op term
expr \rightarrow expr op term
expr \rightarrow term
term \rightarrow id
op $\rightarrow+$
term \rightarrow real
op \rightarrow -
term \rightarrow integer

Parse Trees

- A parse tree is a tree encoding the steps in a derivation.
- Internal nodes represent nonterminal symbols used in the production.
- Inorder walk of the leaves contains the generated string.
- Encodes what productions are used, not the order in which those productions are applied.

Parse Tree

- Inner nodes of a parse tree are non-terminal symbols.
- The leaves of a parse tree are terminal symbols.
- A parse tree can be seen as a graphical representation of a derivation.

EX. $E \Rightarrow-E \Rightarrow-(E) \Rightarrow-(E+E) \Rightarrow-(i d+E) \Rightarrow-(i d+i d)$

\Rightarrow-(id+id)

$$
\begin{aligned}
& E \rightarrow E \text { op } E|(E)|-E \mid \text { id } \\
& \text { op } \rightarrow+\left|-\left.\right|^{*}\right| /
\end{aligned}
$$

$E \Rightarrow E$ op E

\Rightarrow id op E
$\Rightarrow \mathrm{id}+\mathrm{E}$
$\Rightarrow i d+E$ op E

\Rightarrow id + id op E
$\Rightarrow i d+i d{ }^{*} E$
\Rightarrow id + id *id

Parse Trees and Derivations

Consider the expression grammar:

$$
E \rightarrow E+E\left|E^{*} E\right|(E)|-E| i d
$$

Leftmost derivations of id + id *id

Parse Trees and Derivations (cont.)

$$
i d+E * E \Rightarrow i d+i d{ }^{*} E
$$

$i d+i d * E \Rightarrow i d+i d$ *id

Alternative Parse Tree \& Derivation

$$
\begin{aligned}
E & \Rightarrow E * E \\
& \Rightarrow E+E * E \\
& \Rightarrow i d+E * E \\
& \Rightarrow i d+i d * E \\
& \Rightarrow i d+i d * i d
\end{aligned}
$$

WHAT'S THE ISSUE HERE ?
Two distinct leftmost derivations!

Challenges in Parsing

Ambiguity

- A grammar produces more than one parse tree for a sentence is called as an ambiguous grammar.

$$
\begin{aligned}
E & \Rightarrow E+E \Rightarrow i d+E \Rightarrow i d+E^{*} E \\
& \Rightarrow i d+i d^{*} E \Rightarrow i d+i d^{*} i d \\
E & \Rightarrow E^{*} E \Rightarrow E+E^{*} E \Rightarrow i d+E^{*} E \\
& \Rightarrow i d+i d^{*} E \Rightarrow i d+i d^{*} i d
\end{aligned}
$$

Is Ambiguity a Problem?

Depends on semantics.

Resolving Ambiguity

- If a grammar can be made unambiguous at all, it is usually made unambiguous through layering.
- Have exactly one way to build each piece of the string?
- Have exactly one way of combining those pieces back together?

Resolving Ambiguity

- For the most parsers, the grammar must be unambiguous.
- unambiguous grammar
- $\quad \rightarrow$ unique selection of the parse tree for a sentence
- We should eliminate the ambiguity in the grammar during the design phase of the compiler.

Ambiguity - Operator Precedence

- Ambiguous grammars (because of ambiguous operators) can be disambiguated according to the precedence and associativity rules.

$$
E \rightarrow E+E\left|E^{*} E\right| E^{\wedge} E \mid \text { id } \mid(E)
$$

$$
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}
$$

disambiguate the grammar precedence: \wedge (right to left)

* (left to right)
+ (left to right)
Rewrite to eliminate the ambiguity
Or, simply tell which parse tree should be selected

A Parser

- Syntax analyzers (parsers) = CFG acceptors which also output the corresponding derivation when the token stream is accepted
- Various kinds: LL(k), LR(k), SLR, LALR

Types

- Top-Down Parsing
- Recursive descent parsing
- Predictive parsing
- LL(1)
- Bottom-Up Parsing
- Shift-Reduce Parsing
- LR parser

Homework

Page 206: Exercise 4.2.1 Page 207: Exercise 4.2.2 (d) (f) (g)

Two Key Points

```
expression }->\mathrm{ expression }+\mathrm{ term
expression }->\mathrm{ expression - term
expression }->\mathrm{ term
        term }->\mathrm{ term * factor
        term }->\mathrm{ term / factor
        term }->\mathrm{ factor
    factor }->\mathrm{ ( expression)
    factor }->\mathrm{ id
```

```
expression => term
    # term*factor
    =>term/factor*factor
```

-Q1: Which non-terminal to be replaced? Leftmost derivation $S \stackrel{*}{\overrightarrow{\mathrm{~lm}}} \alpha$

- Q2: Which production to be used?

Top-Down Parsing

The parse tree is created top to bottom (from root to leaves). By always replacing the leftmost non-terminal symbol via a production rule, we are guaranteed of developing a parse tree in a left-to-right fashion that is consistent with scanning the input.

Pushdown Automaton

An illustration with PDA

An illustration with PDA

P:
(1) $Z \rightarrow$ aBeA
(2) $A \rightarrow B c$
(3) $B \rightarrow d$
(4) $B \rightarrow b B$
(5) $B \rightarrow \varepsilon$

| Reading
 Head | Stack | Analysis | Derivation | Match? |
| :---: | :--- | :--- | :--- | :--- | :--- |
| c | A | A production
 starting with c?-(2) | Bc | |
| c | Bc | A production starting
 with c? $-(5)$ | $\varepsilon \mathrm{c}$ | c |

Problem - Backtraking

- General category of Top-Down Parsing
- Choose production rule based on input symbol
- May require backtracking to correct a wrong choice.
-Example:

$$
\begin{aligned}
& S \rightarrow C A d \\
& \mathbf{A} \rightarrow \mathrm{ab} \mid \mathrm{a}
\end{aligned}
$$

Problem - Left recursion

- A grammar is Left Recursion if it has a nonterminal A such that there is a derivation $A \Rightarrow^{+} A \alpha$ for some string α.

Left Recursion + top-down parsing = infinite loop

Eg. Term \rightarrow Term*Num

Elimination of Left recursion

- Eliminating Direct Left Recursion

$$
A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| \cdots\left|A \alpha_{m}\right|\left|\beta_{1}\right| \beta_{2}|\cdots| \beta_{n} \quad \beta_{i} a_{i}^{*}
$$

$$
\begin{gathered}
A \rightarrow \beta_{1} A^{\prime}\left|\beta_{2} A^{\prime}\right| \cdots \mid \beta_{n} A^{\prime} \\
A^{\prime} \rightarrow \alpha_{1} A^{\prime}\left|\alpha_{2} A^{\prime}\right| \cdots\left|\alpha_{m} A^{\prime}\right| \epsilon
\end{gathered}
$$

Elimination of Left recursion

- $A \rightarrow A \alpha \mid \beta$ elimination of left recursion

$$
P \rightarrow \beta P^{\prime} \quad P^{\prime} \rightarrow \alpha P^{\prime} \mid \varepsilon
$$

- $P \rightarrow P \alpha_{1}\left|P \alpha_{2}\right| \ldots\left|P \alpha_{m}^{1}\right| \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{n}$
- elimination of left recursion

$$
\begin{aligned}
& P \rightarrow \beta_{1} P^{\prime}\left|\beta_{2} P^{\prime}\right| \ldots \mid \beta_{n} P^{\prime} \\
& P^{\prime} \rightarrow \alpha_{1} P^{\prime}\left|\alpha_{2} P^{\prime}\right| \ldots\left|\alpha_{m} P^{\prime}\right| \varepsilon
\end{aligned}
$$

Elimination of Left recursion (eg.)

- G[E]:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{I}
\end{aligned}
$$

Elimination of Left Recursion

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{TE}^{\prime} \\
& \mathrm{E}^{\prime} \rightarrow+\mathrm{TE}^{\prime} \mid \varepsilon \\
& \mathrm{T} \rightarrow \mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime} \rightarrow \mathrm{FT}^{\prime} \mid \varepsilon \\
& \mathrm{F} \rightarrow(\mathrm{E}) \mid \mathrm{i}
\end{aligned}
$$

Elimination of Left recursion（eg．）

$\mathrm{P} \rightarrow \mathrm{PaPb} \mid \mathrm{BaP}$

$$
\begin{aligned}
& A \rightarrow A \alpha_{1}\left|A \alpha_{2}\right| \cdots\left|A \alpha_{m}\right| \beta_{1}\left|\beta_{2}\right| \cdots \mid \beta_{n} \\
& A \rightarrow \beta_{1} A^{\prime}\left|\beta_{2} A^{\prime}\right| \cdots \mid \beta_{n} A^{\prime} \\
& A^{\prime} \rightarrow \alpha_{1} A^{\prime}\left|\alpha_{2} A^{\prime}\right| \cdots\left|\alpha_{m} A^{\prime}\right| \epsilon
\end{aligned}
$$

－We have $\alpha=a P b, \beta=B a P$
－So， $\mathrm{P} \rightarrow \beta \mathrm{P}^{\prime}$
$\mathrm{P}^{\prime} \rightarrow \alpha \mathrm{P}^{\prime} \mid \varepsilon$
－改写后： $\mathrm{P} \rightarrow \mathrm{BaPP}^{\prime}$

$$
\mathrm{P}^{\prime} \rightarrow \mathrm{aPbP} \mid \varepsilon
$$

Multiple P？Consider the most－left one．

Elimination of Indirect Left recursion

Direct: $S \rightarrow S a$
Indirect: $S \rightarrow A a, A \xrightarrow{+} S b$, then we have $A \xrightarrow{+} A a b$

$$
\begin{aligned}
\text { e.g: } & S \rightarrow A a|b, A \rightarrow S d| \varepsilon \\
S & \rightarrow A a=>S d a
\end{aligned}
$$

Elimination of Left recursion algorithm

Algorithm 4.19: Eliminating left recursion.
INPUT: Grammar G with no cycles or ϵ-productions.
OUTPUT: An equivalent grammar with no left recursion.
METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting non-left-recursive grammar may have ϵ-productions.

1) arrange the nonterminals in some order $A_{1}, A_{2}, \ldots, A_{n}$.
2) for (each i from 1 to n) \{
3) for (each j from 1 to $i-1$) \{
4) replace each production of the form $A_{i} \rightarrow A_{j} \gamma$ by the productions $A_{i} \rightarrow \delta_{1} \gamma\left|\delta_{2} \gamma\right| \cdots \mid \delta_{k} \gamma$, where $A_{j} \rightarrow \delta_{1}\left|\delta_{2}\right| \cdots \mid \delta_{k}$ are all current A_{j}-productions
5) $\}$
6) eliminate the immediate left recursion among the A_{i}-productions
7) $\}$

Elimination of Left recursion (eg.)

$1: S$
$2: A$
$\mathbf{A} \rightarrow \mathbf{A b a} \mid \mathrm{b}$
$\mathbf{A} \rightarrow \mathbf{b A}^{\prime}$
$\mathbf{A}^{\prime} \rightarrow \mathbf{b a A}^{\prime} \mid \varepsilon$

Elimination of Left recursion (eg.)

Elimination of Left recursion (eg.)

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{Q c} \mid \mathbf{c} \\
& \mathbf{Q} \rightarrow \mathbf{R b} \mid \mathbf{b} \\
& \mathbf{R} \rightarrow \mathbf{S} \mathbf{a} \mid \mathbf{a}
\end{aligned}
$$

$1: S$	
$2: \mathrm{Q}$	
$3: R$	
S	$\rightarrow \mathbf{Q c} \mid \mathbf{c}$
Q	$\rightarrow \mathbf{R b} \mid \mathbf{b}$
R	$\rightarrow \mathbf{S a} \mid \mathbf{a}$
	$\rightarrow(\mathbf{Q c} \mid \mathbf{c}) \mathbf{a} \mid \mathbf{a}$
	$\rightarrow \mathbf{Q c a}\|\mathbf{c a}\| \mathbf{a}$
	$\rightarrow(\mathbf{R b} \mid \mathbf{b}) \mathbf{c a}\|\mathbf{c a}\| \mathbf{a}$
S	$\rightarrow \mathbf{Q c} \mid \mathbf{c}$
Q	$\rightarrow \mathbf{R b} \mid \mathbf{b}$
R	$\rightarrow(\mathbf{b c a}\|\mathbf{c a}\| \mathbf{a}) \mathbf{R}^{\prime}$
R^{\prime}	$\rightarrow \mathbf{b c a R} \mid \varepsilon$

Elimination of Left recursion (eg.)

$$
\begin{aligned}
& \mathbf{S} \rightarrow \mathbf{Q c} \mid \mathbf{c} \\
& \mathbf{Q} \rightarrow \mathbf{R b} \mid \mathbf{b} \\
& \mathbf{R} \rightarrow \mathbf{S} \mathbf{a} \mid \mathbf{a}
\end{aligned}
$$

$1: R$
$2: \mathbf{Q}$
$\mathbf{3}: \mathbf{S}$
$\mathbf{R} \rightarrow \mathbf{S a} \mid \mathbf{a}$
$\mathbf{Q} \rightarrow \mathbf{R b}\|\mathbf{b} \rightarrow \mathbf{S a b}\| \mathbf{a b} \mid \mathbf{b}$
$\mathrm{S} \rightarrow \mathbf{Q c}\|\mathbf{c} \rightarrow \mathbf{S a b c}\| \mathbf{a b c}\|\mathbf{b c}\| \mathbf{c}$
$\mathrm{S} \rightarrow(\mathbf{a b c}\|\mathbf{b c}\| \mathbf{c}) \mathbf{S}^{\prime}$
$\mathrm{S} \rightarrow \mathbf{a b c S} \mid \varepsilon$

Problem - Left Factoring

- $\mathrm{A} \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$

$$
\mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \quad \mathrm{A}^{\prime} \rightarrow \beta_{1} \mid \beta_{2}
$$

- $\mathrm{A} \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \ldots\left|\alpha \beta_{\mathrm{n}}\right| \gamma$

$$
\mathrm{A} \rightarrow \alpha \mathrm{~A}^{\prime} \mid \gamma
$$

$$
\mathrm{A}^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \ldots \mid \beta_{\mathrm{n}}
$$

Problem - Left Factoring

Algorithm 4.21: Left factoring a grammar.
INPUT: Grammar G.
OUTPUT: An equivalent left-factored grammar.
METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ - i.e., there is a nontrivial common prefix - replace all of the A-productions $A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \cdots\left|\alpha \beta_{n}\right| \gamma$, where γ represents all alternatives that do not begin with α, by

$$
\begin{aligned}
& A \rightarrow \alpha A^{\prime} \mid \gamma \\
& A^{\prime} \rightarrow \beta_{1}
\end{aligned}\left|\beta_{2}\right| \cdots\left|\mid \beta_{n}\right.
$$

Here A^{\prime} is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix.

Problem - Left Factoring

- E.g
$-S \rightarrow i E t S|i E t S e S| a$ $E \rightarrow b$
- For, S , the longest pre-fix is $i E t S$, Thus, $S \rightarrow i E t S S^{\prime} \mid a$
$S^{\prime} \rightarrow e S \mid \varepsilon$
$E \rightarrow b$

Problem - Left Factoring

- E.g.

G:
(1) $\mathrm{S} \rightarrow \mathrm{aSb}$
(2) $S \rightarrow a S$
(3) $S \rightarrow \varepsilon$

For (1), (2), extract the left factor:
$\mathrm{S} \rightarrow \mathrm{aS}(\mathrm{b} \mid \varepsilon)$
$\mathrm{S} \rightarrow \varepsilon$

We have G^{\prime} :

$$
\begin{aligned}
& \mathrm{S} \rightarrow \mathrm{aSA} \\
& \mathrm{~A} \rightarrow \mathrm{~b} \\
& \mathrm{~A} \rightarrow \varepsilon \\
& \mathrm{~S} \rightarrow \varepsilon
\end{aligned}
$$

Homework

Page 216: Exercise 4.3.1

A Naïve Method

- Recursive-Descent Parsing
- Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
- It is a general parsing technique, but not widely used.
- Not efficient

Recursive-Descent Parsing

```
void A() {
    Choose an A-production, }A->\mp@subsup{X}{1}{}\mp@subsup{X}{2}{}\cdots\mp@subsup{X}{k}{}\mathrm{ ;
    for (i=1 to k) {
        if ( }\mp@subsup{X}{i}{}\mathrm{ is a nonterminal )
        call procedure }\mp@subsup{X}{i}{(})\mathrm{ ;
        else if ( }\mp@subsup{X}{i}{}\mathrm{ equals the current input symbol a )
            advance the input to the next symbol;
            else /* an error has occurred */;
    }
}
```

A typical procedure for a nonterminal in a top-down parse

Recursive-Descent Parsing

- Example

A Non-Recursive Method

- Predictive Parsing

- no backtracking, efficient
- needs a special form of grammars (LL(1) grammars).
- Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

A Non-Recursive Method

$$
\begin{aligned}
& \text { - Predict }(A \rightarrow \alpha) \\
& \text { - First }(\alpha) \\
& \text { - Follow }(A)
\end{aligned}
$$

FIRST Set

FIRST(α)

If α is any string of grammar symbols, let $\operatorname{FIRST}(\alpha)$ be the set of terminals that begin the strings derived from α. If $\alpha \Rightarrow \varepsilon$ then ε is also in $\operatorname{FIRST}(\alpha)$.

To compute FIRST(X) for all grammar symbols X , apply the following rules until no more terminals or ε can be added to any FIRST set:

1. If X is terminal, then $\operatorname{FIRST}(X)$ is $\{X\}$.
2. If $X \rightarrow \varepsilon$ is a production, then add ε to $\operatorname{FIRST}(X)$.
3. If X is nonterminal and $\mathrm{X} \rightarrow \mathrm{Y}_{1} \mathrm{Y}_{2} \ldots \mathrm{Y}_{k}$. is a production, then place a in $\operatorname{FIRST}(\mathrm{X})$ if for some i, a is in $\operatorname{FIRST}\left(\mathrm{Y}_{i}\right)$, and ε is in all of $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right), \ldots, \operatorname{FIRST}\left(\mathrm{Y}_{i-1}\right)$; that is, $\mathrm{Y}_{1}, \ldots, \mathrm{Y}_{i-1} \Rightarrow \varepsilon$. If ε is in $\operatorname{FIRST}\left(\mathrm{Y}_{j}\right)$ for $\operatorname{all} j=1,2, \ldots, k$, then add ε to $\operatorname{FIRST}(\mathrm{X})$. For example, everything in $\operatorname{FIRST}\left(\mathrm{Y}_{1}\right)$ is surely in $\operatorname{FIRST}(\mathrm{X})$. If Y_{1} does not derive ε, then we add nothing more to $\operatorname{FIRST}(\mathrm{X})$, but if $\mathrm{Y}_{1} \Rightarrow \varepsilon$, then we add $\operatorname{FIRST}\left(\mathrm{Y}_{2}\right)$ and so on.

Now, we can compute FIRST for any string $\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{n}$ as follows. Add to $\operatorname{FIRST}\left(\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{n}\right)$ all the nonε symbols of $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$. Also add the non- ε symbols of $\operatorname{FIRST}\left(\mathrm{X}_{2}\right)$ if ε is in $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$, the non- ε symbols of $\operatorname{FIRST}\left(\mathrm{X}_{3}\right)$ if ε is in both $\operatorname{FIRST}\left(\mathrm{X}_{1}\right)$ and $\operatorname{FIRST}\left(\mathrm{X}_{2}\right)$, and so on. Finally, add ε to $\operatorname{FIRST}\left(\mathrm{X}_{1} \mathrm{X}_{2} \ldots \mathrm{X}_{n}\right)$ if, for all $i, \operatorname{FIRST}\left(\mathrm{X}_{i}\right)$ contains ε.

FIRST Example

- First(α)

Motivation Behind FIRST

- Is used to help find the appropriate reduction to follow given the top-of-the-stack nonterminal and the current input symbol.
- If $\mathrm{A} \rightarrow \alpha$, and \mathbf{a} is in $\operatorname{FIRST}(\alpha)$, then when $a=$ input, replace A with α. (a is one of first symbols of α, so when A is on the stack and a is input, POP A and PUSH a.)

$$
\begin{array}{ll}
\text { Example: } & A \rightarrow a B \mid b C \\
& B \rightarrow b \mid d D \\
& C \rightarrow c \\
& D \rightarrow d
\end{array}
$$

FOLLOW Set

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form $\mathrm{S} \Rightarrow \alpha \mathrm{A} a \beta$ for some α and β. Note that there may, at some time during the derivation, have been symbols between A and a, but if so, they derived ε and disappeared. If A can be the rightmost symbol in some sentential form, then \$, representing the input right endmarker, is in FOLLOW(A).

FOLLOW Set (cont.)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set:

1. Place $\$$ in $\operatorname{FOLLOW}(\mathrm{S})$, where S is the start symbol and $\$$ is the input right endmarker.
2. If there is a production $\mathrm{A} \Rightarrow \alpha \mathrm{B} \beta$, then everything in $\operatorname{FIRST}(\beta)$, except for ε, is placed in FOLLOW(B).
3. If there is a production $\mathrm{A} \Rightarrow \alpha \mathrm{B}$, or a production $\mathrm{A} \Rightarrow \alpha \mathrm{B} \beta$ where $\operatorname{FIRST}(\beta)$ contains ε (i.e., $\beta \Rightarrow \varepsilon$), then everything in FOLLOW(A) is in FOLLOW(B).

FOLLOW Set Example

```
P:
(1) E }->\mathrm{ TE'
(2) E'}->+T\mp@subsup{\textrm{TE}}{}{\prime
(3) E'}->
(4) T }->\mathrm{ FT'
(5) T' }\mp@subsup{\textrm{T}}{}{\prime
(6) T'}->
(7) F}->(\textrm{E}
(8) F}->\textrm{i
(9) F}->\textrm{n
```

First(X)

E	$\{i, n,(\}$
E	$\{+, \varepsilon\}$
T	$\{\mathrm{i}, \mathrm{n},(\}$
T^{\prime}	$\{*, \varepsilon\}$
F	$\{\mathrm{i}, \mathrm{n}$, $(\}$

E	$\{\#)\}$,
E^{\prime}	$\{\#)\}$,
T	$\{+),, \#\}$
T^{\prime}	$\{+),, \#\}$
F	$\left.\left\{{ }^{*},+,\right), \#\right\}$

Motivation Behind FOLLOW

- Is used when FIRST has a conflict, to resolve choices, or when FIRST gives no suggestion. When $\alpha \rightarrow \in$ or $\alpha \Rightarrow^{*} \varepsilon$, then what follows A dictates the next choice to be made.
- If $\mathbf{A} \rightarrow \alpha$, and \boldsymbol{b} is in $\operatorname{FOLLOW}(\mathbf{A})$, then when $\alpha \Rightarrow^{*} \varepsilon$ and b is an input character, then we expand \mathbf{A} with α, which will eventually expand to ε, of which b follows! ($\alpha \Rightarrow^{*} \varepsilon$: i.e., $\operatorname{FIRST}(\alpha)$ contains ε.)

Motivation Behind FOLLOW

$$
S=>^{*} \alpha A a \beta
$$

a is in $\operatorname{Follow}(A) ; c$ is in $\operatorname{First}(A)$

Predict Set

- $\operatorname{Predict}(\mathrm{A} \rightarrow \alpha)$
- $\operatorname{Predict}(A \rightarrow \alpha)=\operatorname{First}(\alpha)$, if $\varepsilon \notin \operatorname{First}(\alpha)$;
- $\operatorname{Predict}(A \rightarrow \alpha)=\operatorname{First}(\alpha)-\{\varepsilon\} \cup \operatorname{Follow}(A)$, if $\varepsilon \in$ First(α);

Predict Set Example

first

E	$\{\mathbf{i}, \mathbf{n},(\}$
E	$\{+, \varepsilon\}$
\mathbf{T}	$\{\mathbf{i}, \mathbf{n},(\}$
\mathbf{T}	$\{\quad *, \varepsilon\}$
\mathbf{F}	$\{\mathbf{i}, \mathbf{n},(\}$

Follow

E	$\{\#)\}$,
E	$\{\#)\}$,
T	$\{+),, \#\}$
T,	$\{+),, \#\}$
F	$\left.\left\{{ }^{*},+,\right), \#\right\}$

Now We consider LL(1)

Simple Predictive Parser: LL(1)

- Top-down, predictive parsing:
- L: Left-to-right scan of the tokens
- L: Leftmost derivation.
- (1): One token of lookahead
- Construct a leftmost derivation for the sequence of tokens.
- When expanding a nonterminal, we predict the production to use by looking at the next token of the input. The decision is forced.

LL(1) Grammars

- A grammar G is $L L(1)$ if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$
- Both α and β cannot derive strings starting with same terminals.

$$
A \rightarrow \alpha_{1}\left|\alpha_{2}\right| \ldots \mid \alpha_{n}, \quad \operatorname{FIRST}\left(\alpha_{i}\right) \cap \operatorname{FIRST}\left(\alpha_{j}\right)=\varnothing \quad(1 \leq i \neq j \leq n)
$$

- At most one of α and β can derive to ε.
- If β can derive to ε, then α cannot derive to any string starting with a terminal in FOLLOW(A).
If $\varepsilon \in \operatorname{FIRST}(\beta)$, then $\operatorname{FIRST}(\alpha) \cap \operatorname{FOLLOW}(A)=\varnothing$

[^0]
Predictive Parser

a grammar \rightarrow	\rightarrow	a grammar suitable for predictive
eliminate	left	parsing (a LL(1) grammar)
left recursion	factor	no \%100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

$$
A \rightarrow \alpha_{1}|\ldots| \alpha_{n}
$$

input:

current token

Revisit LL(1) Grammar

LL(1) grammars
$==$ there have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

- Grammar can't be ambiguous or left recursive
- Grammar is $\operatorname{LL}(1) \Leftrightarrow$ when $A \rightarrow \alpha \mid \beta$
$1, \alpha \& \beta$
terminal a

2. Either α or β can derive ε, but not both.

Note: It may not be possible for a grammar to be manipulated into an $\mathrm{LL}(1)$ grammar

A Grammar which is not LL(1)

- A left recursive grammar cannot be a $\mathrm{LL}(1)$ grammar.
- $A \rightarrow A \alpha \mid \beta$
- any terminal that appears in $\operatorname{FIRST}(\beta)$ also appears FIRST(A α) because $A \alpha \Rightarrow \beta \alpha$.
- If β is ε, any terminal that appears in $\operatorname{FIRST}(\alpha)$ also appears in $\operatorname{FIRST}(\mathrm{A} \alpha)$ and $\operatorname{FOLLOW}(\mathrm{A})$.
- A grammar is not left factored, it cannot be a $\operatorname{LL}(1)$ grammar
- $A \rightarrow \alpha \beta_{1} \mid \alpha \beta_{2}$
- any terminal that appears in FIRST $\left(\alpha \beta_{1}\right)$ also appears in $\operatorname{FIRST}\left(\alpha \beta_{2}\right)$.
- An ambiguous grammar cannot be a LL(1) grammar.

Examples

- Example: $\mathrm{S} \rightarrow \mathbf{c} \mathbf{A d} \quad \mathrm{A} \rightarrow$ aa $\mid \mathbf{a}$

Left Factoring: $\mathrm{S} \rightarrow \mathrm{cAd} \quad \mathrm{A} \rightarrow \mathrm{aB} \quad \mathrm{B} \rightarrow \mathrm{a} \mid \varepsilon$

- Example: $\mathrm{S} \rightarrow \mathrm{Sa} \|^{*}$

Eliminate left recursion: $S \rightarrow * B \quad B \rightarrow a B \mid \varepsilon$

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
- If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
- If the grammar is not left factored, we have to left factor the grammar.
- If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.

LL(1): a Predictive Parser

- Symbol stack is used to store the intermeddle results for analysis
- When reaching the end of input stream; meanwhile the stack is empty, the string is accepted.
- LL(1) Analysis Table: T(A,a) indicates which production should be used for derivation.

LL(1) Analysis Table

	a_{1}	\ldots	a_{n}	\#
A_{1}				
\ldots	\ldots	\ldots	\ldots	
Am				

For LL(1) grammar $\mathbf{G}=\left(\mathbf{V}_{\mathbf{N}}, \mathbf{V}_{\mathrm{T}}, \mathrm{S}, \mathrm{P}\right)$ $\mathbf{V}_{\mathbf{T}}=\{\mathbf{a} 1, \ldots, \mathbf{a n}\}, \mathbf{V}_{\mathrm{N}}=\{\mathbf{A} 1, \ldots, A m\}$
$\mathbf{L L}(\mathbf{A i}, \mathbf{a j})=\mathbf{A i} \rightarrow \alpha$, if $\mathbf{a j} \in \operatorname{predict}(\mathbf{A i} \rightarrow \alpha)$
$L L(A i, a j)=$ error (\perp), if aj does not belong to any predict($\mathrm{Ai} \rightarrow \alpha$)

LL(1) Analysis Table

- Example 1

$P:$
(1) $Z \rightarrow a B d$
(2) $B \rightarrow d$
(3) $B \rightarrow c$
(4) $B \rightarrow b B$

Production	Predict
(1)	$\{a\}$
(2)	$\{d\}$
(3)	$\{c\}$
(4)	$\{b\}$

	a	b	c	d	$\#$
Z	(1)				
B		(4)	(3)	(2)	

LL(1) Analysis Table

- Example 2:

(1) $\mathrm{E} \rightarrow \mathrm{TE}$	\{ i, n, (\}			+	*	()	i	n	\#
(2) $\mathrm{E}^{\prime} \rightarrow+$ TE'	\{+\}									
(3) $\mathrm{E}^{\prime} \rightarrow \varepsilon$	\{\#,)\}		E			(1)		(1)	(1)	
(4) $\mathrm{T} \rightarrow \mathrm{FT}$ '	\{i,n, (\}		E'	(2)			(3)			(3)
(5) $\mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{FT}$ '	\{*\}		T			(4)		(4)	(4)	
(6) $\mathrm{T}^{\prime} \rightarrow \varepsilon$	\{), +, \# \}		T,	(6)	(5)		(6)			(6)
(7) $\mathrm{F} \rightarrow$ (E)	\{ (\}			(6)	(5)		(6)			(6)
(8) $\mathrm{F} \rightarrow \mathrm{i}$	\{i\}		F			(7)		(8)	(9)	
(9) $F \rightarrow n$	\{n\}									

LL(1) Driver

METHOD: Initially, the parser is in a configuration with w\$ in the input buffer and the start symbol S of G on top of the stack, above \$.

```
set ip to point to the first symbol of w;
set }X\mathrm{ to the top stack symbol;
while ( }X\not=$\mathrm{ ) { /* stack is not empty */
    if (X is a}\mathrm{ ) pop the stack and advance ip;
    else if ( }X\mathrm{ is a terminal ) error();
    else if ( M[X,a] is an error entry ) error();
```



```
        output the production }X->\mp@subsup{Y}{1}{}\mp@subsup{Y}{2}{}\cdots\mp@subsup{Y}{k}{}
        pop the stack;
        push }\mp@subsup{Y}{k}{},\mp@subsup{Y}{k-1}{},\ldots,\mp@subsup{Y}{1}{}\mathrm{ onto the stack, with }\mp@subsup{Y}{1}{}\mathrm{ on top;
    }
    set }X\mathrm{ to the top stack symbol;
}
```

Figure 4.20: Predictive parsing algorithm

A complete example

- LL1-example. pdf

Homework

Page 231: Exercise 4.4.1 (b) (d) Exercise 4.4.3

Homework

Given arammar $G(T)$, whose productions are. $\begin{aligned} & T \rightarrow a[L] \mid a\end{aligned}$
Given a grammar $G(T)$, whose productions are: $L \rightarrow L L \mid T$ Where ' a ' '[' ']' are terminal, T and L are non-terminal. T is the starting symbol.
(1) Please write down a left-most derivation for sentence "a[aa]"
(2) Try to eliminate the left-recursion and left factor (let's denote the new grammar after this elimination as G^{\prime}).
(3) For G^{\prime}, computer the First and Follow set of all non-terminal symbols;
(4) Construct $\mathrm{LL}(1)$ parsing table, tell whether the new grammar G^{\prime} is LL(1) or not.
(5) Write down the process for analyzing "a[a]" with your LL(1) table.

[^0]: NOW predictive parsers can be constructed for $\mathrm{LL}(1)$ grammars since the proper production to apply for a nonterminal can be selected by looking only at the current input symbol.

