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Derivations Revisited

A derivation encodes two pieces of information:

—\What productions were applied to produce the
resulting string from the start symbol?

—In what order were they applied?

* Multiple derivations might use the same productions,
but apply them in a different order.



Derivation exercise 1

Productions:
assign_stmt — id := expr ;
expr — expr op term

expr — term

term — id Let’s derive:

term — real id := id + real — integer ;
term — integer Please use left-most derivation
op > +

op — -



id := id + real — Integer ;

Left-most derivation: :  Using production:
assign_stmt assign_stmt — id := expr ;
= id = expr ; expr —> expr op term
= id = expr op term ; expr — expr op term
= id := expr op term op term ; expr — term
= id = term op term op term ; term — id
= id := id op term op term; op —> +
= id := id + term op term ; term — real
= id = id + real op term ; op — -
= id :=id + real - term ; term — integer

= id = id + real - integer;



Parse Trees

* A parse tree is a tree encoding the steps in a
derivation.

* Internal nodes represent nonterminal symbols used in
the production.

 [norder walk of the leaves contains the generated
string.

* Encodes what productions are used, not the order In
which those productions are applied.



Parse Tree

* Inner nodes of a parse tree are non-terminal symbols.

* The leaves of a parse tree are terminal symbols.

A parse tree can be seen as a graphical representation of
a derivation.
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Parse Trees and Derivations

Consider the expression grammar:
E—->E+E|E*E | (E) | -E | id
Leftmost derivations of id +id * id

E

E : ZE s
ESE+E — E+E:>|d+E—»||5 + O E
E: 5o F j
[
E
ek T
id+E:>id+E*E_'? +/E\
|
id E 3 E



Parse Trees and Derivations (cont.)

E
A
id+E*E=id+id*E By E
e
id |E % E
id
E
AT
id+id*E=id+id *id E + E
| Pl
id E % E

id id



Alternative Parse Tree & Derivation

E=E*E :
S E+E*E oy
—id+E*E 2N IF
I|E + I|E id
= id +id *E |
id id
= id + id * id

WHAT’S THE ISSUE HERE ?

Two distinct leftmost derivations!
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Challenges in Parsing
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Ambiguity

» A grammar produces more than one parse tree for a
sentence is called as an ambiguous grammar.

|
EorErESSidEE = adETE E/ i \E
= id+d*E = id+id*id |

E = E*E = E+E*E = Id+E"E
= id+Id*E = id+id*id

two parse trees for id+id*id. id id



Is Ambiguity a Problem?

Depends on semantics.
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Resolving Ambiguity

* If a grammar can be made unambiguous at all, it
IS usually made unambiguous through layering.

« Have exactly one way to build each piece of the
string?

« Have exactly one way of combining those pieces
back together?

16



Resolving Ambiguity

For the most parsers, the grammar must be unambiguous.
unambiguous grammar
=» unique selection of the parse tree for a sentence

We should eliminate the ambiguity in the grammar during the
design phase of the compiler.
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Ambiguity — Operator Precedence

 Ambiguous grammars (because of ambiguous operators) can be
disambiguated according to the precedence and associativity rules.

E>E+E | E*E | E*E | id | (E) B EsP T
disambiguate the grammar :> T—>TAF | F
dence: A (right to left) g R S
preceaence. g @ s | (E)

* (left to right)
+ (left to right)

Rewrite to eliminate the ambiguity

Or, simply tell which parse tree should be selected



A Parser

Context free

grammar, G S Yes, if s in L(G)
No, otherwise

Token stream, s $EEA
(from lexer)

Error messages

» Syntax analyzers (parsers) = CFG acceptors which also
output the corresponding derivation when the token stream
IS accepted

* Various kinds: LL(k), LR(k), SLR, LALR



Types

* Top-Down Parsing
» Recursive descent parsing
 Predictive parsing
« LL(1)

» Bottom-Up Parsing
 Shift-Reduce Parsing

* LR parser

20



Homework

Page 206: Exercise 4.2.1
Page 207: Exercise 4.2.2 (d) (f) (g)



Top-Down Parsing




Two Key Points

eTpression
ETPTESSION
CLPreSSIon
term

term

term
factor
factor

erpression + term
expression - term
term

term * factor
term / factor
factor

( expression )

id

| R T A A R

- Q1

expression => term
=> term¥factor
=> term/factor*factor

: Which non-terminal to be replaced?
Leftmost derivation S =a

— Q2: Which production to be used?



Top-Down Parsing

The parse tree is created top to bottom (from root to leaves).

By always replacing the leftmost non-terminal
symbol via a production rule, we are guaranteed of
developing a parse tree in a left-to-right fashion that is
consistent with scanning the input.
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Pushdown Automaton

finite | top

)
control A

ﬁ @ 4
state :

I A

iInput tape
stack



An illustration with PDA

Reading

Head Stack Analysis Derivation Match?
P: . :
(1) Z —> aBeA e 7 V4 Productlon starting g A &
(2) A - Be with a? - (1)
G)B—d bec BeA B production starting  bBeA b
Eg g —bB withb? —(4)

—%0'8
ec BeA B .production starting ceA &
i with e? -(5)
eolive
R A A production starting

with ¢? -(2)(5)



An illustration with PDA

Reading

p Head Stack Analysis Derivation Match?
(1) Z —> aBeA & A A production Bc
(2) A—> Be starting with c?-(2)
B3 B—->d
4) B—> bB
E5§ o Pl e C Bce A production starting &€ C
with ¢? —(5)




Problem - Backtraking

* General category of Top-Down Parsing
» Choose production rule based on input symbol
» May require backtracking to correct a wrong choice.

‘Example: S —>cAd
A—ab|a

input: cad
cad

S
S cad /l\
A C/L\d A ¢ p d

«

E 0"” . /
< Problem: backtrack
; 0”. é

RN
f ARG R e B,
N A ¢

A
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Problem — Left recursion

« Agrammar is Left Recursion if it has a nonterminal A
such that there is a derivation A =* Aa for some string «a.

Left Recursion + top-down parsing = infinite loop
Eg. Term — Term*Num

lerm
. Term lerm 4 Num
o “ s

lerm 4«  Num
lerm * Num



Elimination of Left recursion

« Eliminating Direct Left Recursion

{_}10{1 I ‘1(12' Lo | ;-4(X,,,| Bl | B]' e | Bn 181 a _Z. *

A—B A" | ByA | o | B A’

A—a A 1 A’ | |l A" | €

m-



Elimination of Left recursion

A—-Aa|f
elimination of left recursion
P— BP’ P'— aP’|e

P— Pay| Payl...| Poupy | Byl Bal--- | By
elimination of left recursion

e b 5 6l R 6

P'—> a,P'| a,P'|...] a,P'| €
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Elimination of Left recursion (eg.)

e GIEl:  E—E+T|T
T — T*F|F
F— (E)| |

Elimination of Left Recursion

E > TE

E' > +TE'|¢
T > FT

T — *FT'|¢
F > (E)]|i

7



Elimination of Left recursion (eg.)

A—Aa, | Aay| =+ | Aa, | By 1 Byl =+ | B,
A—B A" | ByA" | = | B A
P—> PaPb|BaP A'—a A | apA' | | o A" | e
 We have a = aPb, B=BaP
* So, P> BP' Multiple P? Consider the most-left one.
P’ aP’|e

- X5f5: P> BaPP’
P’ aPbP’|e



Elimination of Indirect Left recursion

Direct: S - Sa
+
Indirect: S — Aa, A i> Sb , then we have A — Aab

e.g: S —Aa|b, A—>Sd|£
S => Aa => Sda
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Elimination of Left recursion algorithm

Algorithm 4.19: Eliminating left recursion.
INPUT: Grammar G with no cycles or e-productions.
OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting
non-left-recursive grammar may have e-productions. 0O

1) arrange the nonterminals in some order Ay, Aa,. .., An.
2) for (eachifrom1lton ) {
3) for (each j from1toi—1) {
4) replace each production of the form A; = A;7y by the
productions A; = 817 | 82y | -+ - | dk7y, where
) Aj =01 | 03| +-+ | O are all current A;-productions
5 )
6) eliminate the immediate left recursion among the A;-productions
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Elimination of Left recursion (eg.)

S—Ab 1:S
A—>Sa|b 2:A
A— Aba|b
A — bA’
A’ > baA’ | ¢




Elimination of Left recursion (eg.)

1:S

23X
S - Aa|b, S - Aa|b,

A—Ac|Sd]|e A > Ac|Aad | bd | ¢

S - Aa]|b,
A -bdA’ | A’
A’ —>cA'|adA’ | ¢




Elimination of Left recursion (eg.)

1:S
S—)QClC 2:Q
Q> Rb|b 3R

R—>Sa|a S—)QC'C

Q—>Rb|b
R—>Sa|a
— (Qc|c)a | a
—>Qca|ca|a
—>(Rb|b)ca|ca|a

S—>Qc|c
Q—->Rb|b

R — (bca|ca|a)R’
R’ > bcaR’ | ¢




Elimination of Left recursion (eg.)

S—>Qclc ;R
Q> Rb|b Q
R—>Sal a i

R —>Sa|a

Q—>Rb|b—>Sab|ab|b
S — Qc | c— Sabce | abe | be | c

S — (abc | be | ©)S’
S’ — abcS’ | €




Problem - Left Factoring

A—afq|ap,
A— A’ A - B.| B>

A— af, | aﬂzl--- | of, |y
A— aA'ly

Ao 181 | 182| |/Bn
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Problem - Left Factoring

Algorithm 4.21: Left factoring a grammar.
INPUT: Grammar G.
OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix @ common to two
or more of its alternatives. If @ # € — i.e., there is a nontrivial common
prefix — replace all of the A-productions A — afy | aB2 | -+ | @By | 7, where
~ represents all alternatives that do not begin with «, by

A—aAd | v
A =B | B2 | | Bn

Here A’ is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. O
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Problem - Left Factoring

¢ g
— S22 iELS | iEtSeS | a
E-=2b
— For, S, the longest pre-fix 1s iE%S, Thus,
S 2iEtSS’| a
S’ 2eS| ¢
E=2b



- E.g.

(1.) S—aSb
(2) S—aS
(3) S—¢

Problem - Left Factoring

For (1). (2), extract the left factor:
S— aS(ble)
S—¢

We have G':
S—aSA
A—b
A—¢
S—¢



Homework

Page 216: Exercise 4.3.1



Two Parsing Methods




A Naive Method

— Recursive-Descent Parsing

« Backtracking is needed (If a choice of a production rule does
not work, we backtrack to try other alternatives.)

« |t is a general parsing technique, but not widely used.
* Not efficient



Recursive-Descent Parsing

void A() {
Choose an A-production, 4 = X; X, -+ X}
for (i=1tok )
if ( X, is a nonterminal )
call procedure X;();
else if ( X; equals the current input symbol a )
advance the mmput to the next symbol:
else /* an error has occurred */;

=t W S

|-|—'|..
™ et it it et g™ g™

R

=]

A typical procedure for a nonterminal in a top-down parse
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Recursive-Descent Parsing

- Example
Z() B()
P: { !
; if (token == a) case token of
(;) LAl { match(a); d: match(d);break;
2)B—~>d dj B(); c: match(c); break;
G)B—c ¢ match(d); b:{ match(b);
4)B—>bB  {b} } B(); break;}
else error(); other: error();
a b c d } )
void main()
{read();
Z0); }




A Non-Recursive Method

— Predictive Parsing
* no backtracking, efficient
* needs a special form of grammars (LL(1) grammars).

* Non-Recursive (Table Driven) Predictive Parser is also
known as LL(1) parser.



A Non-Recursive Method

Predict (A—> )
First (o)
Follow(A)




FIRST Set

FIRST(x.)

If o 1s any string of grammar symbols, let FIRST (o) be the set of terminals that begin the strings derived
from a. If oo = ¢ then € 1s also in FIRST ().

1. If X 1s terminal, then FIRST(X) 1s {X}.
2. If X — e1s a production, then add € to FIRST(X).

3. If X is nonterminal and X —>Y, Y, ... Y;. 1s a production, then place a in FIRST(X) if for some 7, a 1s in
FIRST(Y;), and € 1s n all of FIRST(Y)), ... , FIRST(Y.,); that1s, Y, ... ,Y,.; = €. If € 1s in FIRST(Y)) for
allj =1, 2, ..., k, then add ¢ to FIRST(X). For example, everything in FIRST(Y) 1s surely in
FIRST(X). If Y, does not derive €, then we add nothing more to FIRST(X), but if Y,= ¢, then we add
FIRST(Y,) and so on.

Now, we can compute FIRST for any string X, X, . . . X,, as follows. Add to FIRST(X;X, ... X,) all the non-
e symbols of FIRST(X). Also add the non-¢ symbols of FIRST(X5) if € 1s in FIRST(X,), the non-& symbols
of FIRST(X3) if € 1s in both FIRST(X,) and FIRST(X,), and so on. Finally, add € to FIRST(X,X, ... X,) if,
tor all i, FIRST(X,) contains €.



FIRST Example

Se = {E’, T’}

First(E'T’E) = {+,*,i,n,(}
First(T’'E’) = {+,*,&}

m First(o)
First(E'T’E) =?
First(T’E’) =?
E {iin, (} P
E’ {+,¢} (1) E->TFE’
S LT 2) E' - +TE’
T | (* ¢} B) E —>e¢
. 4) T = FT’
F {iin, (]} 5) T'> *FT
6) T">¢
(7) F—(E)
8) F—i
9 F—->n




Motivation Behind FIRST

*|s used to help find the appropriate reduction
to follow given the top-of-the-stack non-
terminal and the current input symbol.

If A> o, and ais in FIRST(a), then when
a=input, replace A with a. ( a is one of first
symbols of o, so when A is on the stack and a
is input, POP A and PUSH «a.)

Example: A—>aB|bC
B —> b|dD
Coc
D—>d




FOLLOW Set

Define FOLLOW/(A), for nonterminal A, to be the set of terminals « that can appear immediately to the right
of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form
S—aAap for some o and B. Note that there may, at some time during the derivation, have been symbols
between A and a, but if so. they derived € and disappeared. If A can be the rightmost symbol in some

sentential form. then $. representing the input right endmarker. 1s in FOLLOW(A).
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FOLLOW Set (cont.)

To compute FOLLOW(A) for all nonterminals A. apply the following rules until nothing can be added to any
FOLLOW set:

1. Place $ in FOLLOW(S). where S is the start symbol and $ is the input right endmarker.

2

If there 1s a production A = oBJ. then everything in FIRST(p), except for ¢, 1s placed in FOLLOW(B).

(7S

If there is a production A = aB, or a production A = oBp where FIRST(P) contains € (i.e.. p =¢),
then everything in FOLLOW(A) is in FOLLOW(B).
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FOLLOW Set Example

P:

(1) E > TE’ E | {in,(} E | {#)}
2) E’ >+ TE’ e i) E' | {# )}
B) E' > ¢ T {Ln,(} ) i Y 48 W2
4) T->FT T [* e} ;

5) T"> *FT Pt T D)o )
6) T'>¢ (} Fuslif®, 40 ) 7]
(7) F - (E)

8) F—i

9) F>n




Motivation Behind FOLLOW

|s used when FIRST has a conflict, to
resolve choices, or when FIRST gives no
suggestion. When o —» € or a =" ¢, then
what follows A dictates the next choice to
be made.

If A> o, and bis in FOLLOW(A ), then
when a =¥ € and b is an input character,
then we expand A with o , which will
eventually expand to ¢, of which b follows!
(o =>* ¢:i.e., FIRST(a ) contains ¢.)



Motivation Behind FOLLOW

iad R
S=>*aAaf
é.
~ _v’ “‘ ——
f \ H"'\_
) " ‘-" \\ \‘\_\
- ‘ .
- A 0 ' o~
(h /' \ 'ta

a is in Follow(A); c is in First(A)



Predict Set

* Predict(A — a)
* Predict(A — a) = First(a), if € ¢ First(a);

* Predict(A — o) = First(a)- {e} U Follow(A), if € €
First(o);



Predict Set Example

first

E [{i,n,(}
P: Ell+.¢}
(1) E > TE’ First(TE’)={i, n,( } T [{iin, (}
(2) E> > + TE® First(+TE’)={+} Trapl sty et}
3) E—e Follow(E’)={#, )} F [{in,(}
@) T > FT’ First(FT”)={i,n,}
(5) T’ > * F T First(*FT")={*} Follow
6) T'>¢ | Follow(T)={,+,#} |E |{# )}
(7) F—> (E) | First(E))={ (} B [{# )}
@) F=>1 I  First(i)={i} T |{+ ) #
O Fon Sl pistm)=m T |{+) #

Eh M) #)




Now We consider LL(1)



Simple Predictive Parser: LL(1)

« TJop-down, predictive parsing:
— L: Left-to-right scan of the tokens
— L: Leftmost derivation.
— (1): One token of lookahead

« Construct a leftmost derivation for the sequence of
tokens.
 When expanding a nonterminal, we predict the

production to use by looking at the next token of
the input. The decision is forced.



LL(1) Grammars

« Agrammar Gis LL(1) if and only if the following conditions
hold for two distinctive production rules A—ao and A—

— Both o and  cannot derive strings starting with same
terminals.
A—> o4l ayl...| a,, FIRST(ay) " FIRST(oy) = D (1<izj<n)
— At most one of a and 3 can derive to «.
— |f B can derive to g, then o cannot derive to any string
starting with a terminal in FOLLOW(A).
If ecFIRST(B) , then FIRST(a) n FOLLOW(A) = &

NOW predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at the current
input symbol.



Predictive Parser

a grammar => =» a grammar suitable for predictive
eliminate left parsing (a LL(1) grammar)
left recursion factor no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive
parser can uniquely choose a production rule by just looking the
current symbol in the input string.

A->ayl...|a, input: ...a.......

current token
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Revisit LL(1) Grammar

LL(1) grammars

== there have no multiply-defined entries in the parsing
table.

Properties of LL(1) grammars:

« Grammar can't be ambiguous or left recursive
« Grammar is LL(1) < when A —»a, | B

1, o & B do not derive strings starting with the same
terminal a

2. Either o or 3 can derive g, but not both.

Note: It may not be possible for a grammar to be
manipulated into an LL(1) grammar
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A Grammar which is not LL(1)

« Aleft recursive grammar cannot be a LL(1) grammar.
— A->Aa|p

 any terminal that appears in FIRST() also appears
FIRST(Aa) because Aa = Ba.

* If Bis g, any terminal that appears in FIRST(a) also
appears in FIRST(Aa) and FOLLOW(A).

« A grammar is not left factored, it cannot be a LL(1) grammar
- A->aPq|ap;
 any terminal that appears in FIRST(a34) also appears
in FIRST(af,).

* An ambiguous grammar cannot be a LL(1) grammar.



Examples

« Example: S —>cAd A —>aala

Left Factoring: S >cAd

A — aB B—al ¢

 Example: S— Sa | *

Eliminate left recursion:

S—»> *B B-—o>aB]|¢
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A Grammar which is not LL(1) (cont.)

 What do we have to do it if the resulting parsing table
contains multiply defined entries?

—|f we didn’t eliminate left recursion, eliminate the left
recursion in the grammar.

— If the grammar is not left factored, we have to left
factor the grammar.

— If its (new grammar’s) parsing table still contains
multiply defined entries, that grammar is ambiguous
or it is inherently not a LL(1) grammar.



LL(1): a Predictive Parser

Symbol Input token stream
Stack = | | | LL[1]Analysis Table
LL(1) e e —
LL(1) Driver will handle
.5 © Empty stack
e Xe V; =
e Xe Vy

Symbol stack is used to store the intermeddle results for analysis

When reaching the end of input stream; meanwhile the stack is empty,
the string is accepted.

LL(1) Analysis Table: T(A,a) indicates which production should be used
for derivation.



LL(1) Analysis Table

For LL(1) grammar G =(Vy, V1, S, P)

Vry=1al,...,an}, Vy={Al,...,Am}

Am

LL(AIL aj) = Ai— a, if aje predict(Ai— o)

LL(AI, aj) = error(l), if aj does not belong to any
predict(Ai— o)



LL(1) Analysis Table

 Example 1 Production |Predict
3 (1) {a}
1) Z —> aBd (2) {d}
b (3) (c)
(4) B - bB (4) (b}

Z (1)

B 4 | 3) | (@)




LL(1) Analysis Table

e Example 2:

(1) E> TP {i,n, (} + |* () i n |#
(2) 2> +TE {+} E
3) B> ¢ {#, )} @ ol
4) T FD {i,n,0 B 3) 3)
EAL S ALY i @ @@
6) T >e 0.+ #} [+

(6) 6
(7) F— (E) {(} 40) 2
@) Foi o F (7) ®]0©
9 F—>n {n}




LL(1) Driver

METHOD: Initially, the parser is in a configuration with w$ in the
input buffer and the start symbol S of G on top of the stack, above $.

set ip to point to the first symbol of w;
set X to the top stack symbol;
while ( X #8§ ) { /* stack is not empty */
if ( X is a ) pop the stack and advance ip;
else if ( X is a terminal ) error();
else if ( M[X,a] is an error entry ) error();
else if ( M[X,a]=X - 11Yo---Yi ) {
output the production X — Y7Y5 --- Yy;
pop the stack;
push Y, Yi—1,...,Y] onto the stack, with Y7 on top;

}

set X to the top stack symbol;

Figure 4.20: Predictive parsing algorithm



A complete example

e [L1-example. pdf




Homework

Page 231: Exercise 4.4.1 (b) (d)
Exercise 4.4.3



Homework

T all]]a
Given a grammar G(T), whose productions are: L>LL|T
Where ‘a’” [ ] areterminal, T and L are non-terminal. T is the starting symbol.

(1) Please write down a left-most derivation for sentence “a[aa]’

(2) Try to eliminate the left-recursion and left factor (let’s denote
the new grammar after this elimination as G’).

(3) For G’, computer the First and Follow set of all non-terminal
symbols;

(4) Construct LL(1) parsing table, tell whether the new grammar G’ is
LL(1) or not.

(5) Write down the process for analyzing “a[a]” with your LL(1) table.



