Lecture 6: Syntax Analysis
(cont.)
Xiaoyuan Xie #t% E

xxie(@whu.edu.cn
A A FRE301

Syntax Analysis

Where are we ?

Source Lexical Analysis
Code

Syntax Analysis

Semantic Analysis
IR Generation
IR Optimization

Code Generation

Optimization Machine
Code

Derivations Revisited

A derivation encodes two pieces of information:

—\What productions were applied to produce the
resulting string from the start symbol?

—In what order were they applied?

* Multiple derivations might use the same productions,
but apply them in a different order.

Derivation exercise 1

Productions:
assign_stmt — id := expr ;
expr — expr op term

expr — term

term — id Let’s derive:

term — real id := id + real — integer ;
term — integer Please use left-most derivation
op > +

op — -

id := id + real — Integer ;

Left-most derivation: : Using production:
assign_stmt assign_stmt — id := expr ;
= id = expr ; expr —> expr op term
= id = expr op term ; expr — expr op term
= id := expr op term op term ; expr — term
= id = term op term op term ; term — id
= id := id op term op term; op —> +
= id := id + term op term ; term — real
= id = id + real op term ; op — -
= id :=id + real - term ; term — integer

= id = id + real - integer;

Parse Trees

* A parse tree is a tree encoding the steps in a
derivation.

* Internal nodes represent nonterminal symbols used in
the production.

 [norder walk of the leaves contains the generated
string.

* Encodes what productions are used, not the order In
which those productions are applied.

Parse Tree

* Inner nodes of a parse tree are non-terminal symbols.

* The leaves of a parse tree are terminal symbols.

A parse tree can be seen as a graphical representation of
a derivation.

EX. E= -E = -(E) = -(E+E) = -(id+E) = -(id+id)

E—-E _/% = -(E) /% — (E+E) /%
0 RS
o Pt :

= _(id+E) /JE\ = _(id+id) / E\
S { ' \a

id 1d 1d

E>EopE|(E)|-E|id

op—>+|[-|"]/

E—-EopE

= idop E

= id+ E

= id+EopE
= id+idop E
= id+id*E

= id +id * id

Q

+—o—m

Z

P

A

E

d

m

g © HE

T
p

o M

Parse Trees and Derivations

Consider the expression grammar:
E—->E+E|E*E | (E) | -E | id
Leftmost derivations of id +id * id

E

E : ZE s
ESE+E — E+E:>|d+E—»||5 + O E
E: 5o F j
[
E
ek T
id+E:>id+E*E_'? +/E\
|
id E 3 E

Parse Trees and Derivations (cont.)

E
A
id+E*E=id+id*E By E
e
id |E % E
id
E
AT
id+id*E=id+id *id E + E
| Pl
id E % E

id id

Alternative Parse Tree & Derivation

E=E*E :
S E+E*E oy
—id+E*E 2N IF
I|E + I|E id
= id +id *E |
id id
= id + id * id

WHAT’S THE ISSUE HERE ?

Two distinct leftmost derivations!

12

Challenges in Parsing

13

Ambiguity

» A grammar produces more than one parse tree for a
sentence is called as an ambiguous grammar.

|
EorErESSidEE = adETE E/ i \E
= id+d*E = id+id*id |

E = E*E = E+E*E = Id+E"E
= id+Id*E = id+id*id

two parse trees for id+id*id. id id

Is Ambiguity a Problem?

Depends on semantics.

i S
\ /\\ A

id

Resolving Ambiguity

* If a grammar can be made unambiguous at all, it
IS usually made unambiguous through layering.

« Have exactly one way to build each piece of the
string?

« Have exactly one way of combining those pieces
back together?

16

Resolving Ambiguity

For the most parsers, the grammar must be unambiguous.
unambiguous grammar
=» unique selection of the parse tree for a sentence

We should eliminate the ambiguity in the grammar during the
design phase of the compiler.

17

Ambiguity — Operator Precedence

 Ambiguous grammars (because of ambiguous operators) can be
disambiguated according to the precedence and associativity rules.

E>E+E | E*E | E*E | id | (E) B EsP T
disambiguate the grammar :> T—>TAF | F
dence: A (right to left) g R S
preceaence. g @ s | (E)

* (left to right)
+ (left to right)

Rewrite to eliminate the ambiguity

Or, simply tell which parse tree should be selected

A Parser

Context free

grammar, G S Yes, if s in L(G)
No, otherwise

Token stream, s $EEA
(from lexer)

Error messages

» Syntax analyzers (parsers) = CFG acceptors which also
output the corresponding derivation when the token stream
IS accepted

* Various kinds: LL(k), LR(k), SLR, LALR

Types

* Top-Down Parsing
» Recursive descent parsing
 Predictive parsing
« LL(1)

» Bottom-Up Parsing
 Shift-Reduce Parsing

* LR parser

20

Homework

Page 206: Exercise 4.2.1
Page 207: Exercise 4.2.2 (d) (f) (g)

Top-Down Parsing

Two Key Points

eTpression
ETPTESSION
CLPreSSIon
term

term

term
factor
factor

erpression + term
expression - term
term

term * factor
term / factor
factor

(expression)

id

| R T A A R

- Q1

expression => term
=> term¥factor
=> term/factor*factor

: Which non-terminal to be replaced?
Leftmost derivation S =a

— Q2: Which production to be used?

Top-Down Parsing

The parse tree is created top to bottom (from root to leaves).

By always replacing the leftmost non-terminal
symbol via a production rule, we are guaranteed of
developing a parse tree in a left-to-right fashion that is
consistent with scanning the input.

24

Pushdown Automaton

finite | top

)
control A

ﬁ @ 4
state :

I A

iInput tape
stack

An illustration with PDA

Reading

Head Stack Analysis Derivation Match?
P: . :
(1) Z —> aBeA e 7 V4 Productlon starting g A &
(2) A - Be with a? - (1)
G)B—d bec BeA B production starting bBeA b
Eg g —bB withb? —(4)

—%0'8
ec BeA B .production starting ceA &
i with e? -(5)
eolive
R A A production starting

with ¢? -(2)(5)

An illustration with PDA

Reading

p Head Stack Analysis Derivation Match?
(1) Z —> aBeA & A A production Bc
(2) A—> Be starting with c?-(2)
B3 B—->d
4) B—> bB
E5§ o Pl e C Bce A production starting &€ C
with ¢? —(5)

Problem - Backtraking

* General category of Top-Down Parsing
» Choose production rule based on input symbol
» May require backtracking to correct a wrong choice.

‘Example: S —>cAd
A—ab|a

input: cad
cad

S
S cad /l\
A C/L\d A ¢ p d

«

E 0"” . /
< Problem: backtrack
; 0”. é

RN
f ARG R e B,
N A ¢

A

28

Problem — Left recursion

« Agrammar is Left Recursion if it has a nonterminal A
such that there is a derivation A =* Aa for some string «a.

Left Recursion + top-down parsing = infinite loop
Eg. Term — Term*Num

lerm
. Term lerm 4 Num
o “ s

lerm 4« Num
lerm * Num

Elimination of Left recursion

« Eliminating Direct Left Recursion

{_}10{1 I ‘1(12' Lo | ;-4(X,,,| Bl | B]' e | Bn 181 a _Z. *

A—B A" | ByA | o | B A’

A—a A 1 A’ | |l A" | €

m-

Elimination of Left recursion

A—-Aa|f
elimination of left recursion
P— BP’ P'— aP’|e

P— Pay| Payl...| Poupy | Byl Bal--- | By
elimination of left recursion

e b 5 6l R 6

P'—> a,P'| a,P'|...] a,P'| €

31

Elimination of Left recursion (eg.)

e GIEl: E—E+T|T
T — T*F|F
F— (E)| |

Elimination of Left Recursion

E > TE

E' > +TE'|¢
T > FT

T — *FT'|¢
F > (E)]|i

7

Elimination of Left recursion (eg.)

A—Aa, | Aay| =+ | Aa, | By 1 Byl =+ | B,
A—B A" | ByA" | = | B A
P—> PaPb|BaP A'—a A | apA' | | o A" | e
 We have a = aPb, B=BaP
* So, P> BP' Multiple P? Consider the most-left one.
P’ aP’|e

- X5f5: P> BaPP’
P’ aPbP’|e

Elimination of Indirect Left recursion

Direct: S - Sa
+
Indirect: S — Aa, A i> Sb , then we have A — Aab

e.g: S —Aa|b, A—>Sd|£
S => Aa => Sda

34

Elimination of Left recursion algorithm

Algorithm 4.19: Eliminating left recursion.
INPUT: Grammar G with no cycles or e-productions.
OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting
non-left-recursive grammar may have e-productions. 0O

1) arrange the nonterminals in some order Ay, Aa,. .., An.
2) for (eachifrom1lton) {
3) for (each j from1toi—1) {
4) replace each production of the form A; = A;7y by the
productions A; = 817 | 82y | -+ - | dk7y, where
) Aj =01 | 03| +-+ | O are all current A;-productions
5)
6) eliminate the immediate left recursion among the A;-productions

35

Elimination of Left recursion (eg.)

S—Ab 1:S
A—>Sa|b 2:A
A— Aba|b
A — bA’
A’ > baA’ | ¢

Elimination of Left recursion (eg.)

1:S

23X
S - Aa|b, S - Aa|b,

A—Ac|Sd]|e A > Ac|Aad | bd | ¢

S - Aa]|b,
A -bdA’ | A’
A’ —>cA'|adA’ | ¢

Elimination of Left recursion (eg.)

1:S
S—)QClC 2:Q
Q> Rb|b 3R

R—>Sa|a S—)QC'C

Q—>Rb|b
R—>Sa|a
— (Qc|c)a | a
—>Qca|ca|a
—>(Rb|b)ca|ca|a

S—>Qc|c
Q—->Rb|b

R — (bca|ca|a)R’
R’ > bcaR’ | ¢

Elimination of Left recursion (eg.)

S—>Qclc ;R
Q> Rb|b Q
R—>Sal a i

R —>Sa|a

Q—>Rb|b—>Sab|ab|b
S — Qc | c— Sabce | abe | be | c

S — (abc | be | ©)S’
S’ — abcS’ | €

Problem - Left Factoring

A—afq|ap,
A— A’ A - B.| B>

A— af, | aﬂzl--- | of, |y
A— aA'ly

Ao 181 | 182| |/Bn

40

Problem - Left Factoring

Algorithm 4.21: Left factoring a grammar.
INPUT: Grammar G.
OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix @ common to two
or more of its alternatives. If @ # € — i.e., there is a nontrivial common
prefix — replace all of the A-productions A — afy | aB2 | -+ | @By | 7, where
~ represents all alternatives that do not begin with «, by

A—aAd | v
A =B | B2 | | Bn

Here A’ is a new nonterminal. Repeatedly apply this transformation until no
two alternatives for a nonterminal have a common prefix. O

41

Problem - Left Factoring

¢ g
— S22 iELS | iEtSeS | a
E-=2b
— For, S, the longest pre-fix 1s iE%S, Thus,
S 2iEtSS’| a
S’ 2eS| ¢
E=2b

- E.g.

(1.) S—aSb
(2) S—aS
(3) S—¢

Problem - Left Factoring

For (1). (2), extract the left factor:
S— aS(ble)
S—¢

We have G':
S—aSA
A—b
A—¢
S—¢

Homework

Page 216: Exercise 4.3.1

Two Parsing Methods

A Naive Method

— Recursive-Descent Parsing

« Backtracking is needed (If a choice of a production rule does
not work, we backtrack to try other alternatives.)

« |t is a general parsing technique, but not widely used.
* Not efficient

Recursive-Descent Parsing

void A() {
Choose an A-production, 4 = X; X, -+ X}
for (i=1tok)
if (X, is a nonterminal)
call procedure X;();
else if (X; equals the current input symbol a)
advance the mmput to the next symbol:
else /* an error has occurred */;

=t W S

|-|—'|..
™ et it it et g™ g™

R

=]

A typical procedure for a nonterminal in a top-down parse

47

Recursive-Descent Parsing

- Example
Z() B()
P: { !
; if (token == a) case token of
(;) LAl { match(a); d: match(d);break;
2)B—~>d dj B(); c: match(c); break;
G)B—c ¢ match(d); b:{ match(b);
4)B—>bB {b} } B(); break;}
else error(); other: error();
a b c d })
void main()
{read();
Z0); }

A Non-Recursive Method

— Predictive Parsing
* no backtracking, efficient
* needs a special form of grammars (LL(1) grammars).

* Non-Recursive (Table Driven) Predictive Parser is also
known as LL(1) parser.

A Non-Recursive Method

Predict (A—>)
First (o)
Follow(A)

FIRST Set

FIRST(x.)

If o 1s any string of grammar symbols, let FIRST (o) be the set of terminals that begin the strings derived
from a. If oo = ¢ then € 1s also in FIRST ().

1. If X 1s terminal, then FIRST(X) 1s {X}.
2. If X — e1s a production, then add € to FIRST(X).

3. If X is nonterminal and X —>Y, Y, ... Y;. 1s a production, then place a in FIRST(X) if for some 7, a 1s in
FIRST(Y;), and € 1s n all of FIRST(Y)), ... , FIRST(Y.,); that1s, Y, ... ,Y,.; = €. If € 1s in FIRST(Y)) for
allj =1, 2, ..., k, then add ¢ to FIRST(X). For example, everything in FIRST(Y) 1s surely in
FIRST(X). If Y, does not derive €, then we add nothing more to FIRST(X), but if Y,= ¢, then we add
FIRST(Y,) and so on.

Now, we can compute FIRST for any string X, X, . . . X,, as follows. Add to FIRST(X;X, ... X,) all the non-
e symbols of FIRST(X). Also add the non-¢ symbols of FIRST(X5) if € 1s in FIRST(X,), the non-& symbols
of FIRST(X3) if € 1s in both FIRST(X,) and FIRST(X,), and so on. Finally, add € to FIRST(X,X, ... X,) if,
tor all i, FIRST(X,) contains €.

FIRST Example

Se = {E’, T’}

First(E'T’E) = {+,*,i,n,(}
First(T’'E’) = {+,*,&}

m First(o)
First(E'T’E) =?
First(T’E’) =?
E {iin, (} P
E’ {+,¢} (1) E->TFE’
S LT 2) E' - +TE’
T | (* ¢} B) E —>e¢
. 4) T = FT’
F {iin, (]} 5) T'> *FT
6) T">¢
(7) F—(E)
8) F—i
9 F—->n

Motivation Behind FIRST

*|s used to help find the appropriate reduction
to follow given the top-of-the-stack non-
terminal and the current input symbol.

If A> o, and ais in FIRST(a), then when
a=input, replace A with a. (a is one of first
symbols of o, so when A is on the stack and a
is input, POP A and PUSH «a.)

Example: A—>aB|bC
B —> b|dD
Coc
D—>d

FOLLOW Set

Define FOLLOW/(A), for nonterminal A, to be the set of terminals « that can appear immediately to the right
of A in some sentential form, that is, the set of terminals a such that there exists a derivation of the form
S—aAap for some o and B. Note that there may, at some time during the derivation, have been symbols
between A and a, but if so. they derived € and disappeared. If A can be the rightmost symbol in some

sentential form. then $. representing the input right endmarker. 1s in FOLLOW(A).

54

FOLLOW Set (cont.)

To compute FOLLOW(A) for all nonterminals A. apply the following rules until nothing can be added to any
FOLLOW set:

1. Place $ in FOLLOW(S). where S is the start symbol and $ is the input right endmarker.

2

If there 1s a production A = oBJ. then everything in FIRST(p), except for ¢, 1s placed in FOLLOW(B).

(7S

If there is a production A = aB, or a production A = oBp where FIRST(P) contains € (i.e.. p =¢),
then everything in FOLLOW(A) is in FOLLOW(B).

55

FOLLOW Set Example

P:

(1) E > TE’ E | {in,(} E | {#)}
2) E’ >+ TE’ e i) E' | {#)}
B) E' > ¢ T {Ln,(}) i Y 48 W2
4) T->FT T [* e} ;

5) T"> *FT Pt T D)o)
6) T'>¢ (} Fuslif®, 40) 7]
(7) F - (E)

8) F—i

9) F>n

Motivation Behind FOLLOW

|s used when FIRST has a conflict, to
resolve choices, or when FIRST gives no
suggestion. When o —» € or a =" ¢, then
what follows A dictates the next choice to
be made.

If A> o, and bis in FOLLOW(A), then
when a =¥ € and b is an input character,
then we expand A with o , which will
eventually expand to ¢, of which b follows!
(o =>* ¢:i.e., FIRST(a) contains ¢.)

Motivation Behind FOLLOW

iad R
S=>*aAaf
é.
~ _v’ “‘ ——
f \ H"'_
) " ‘-" \\ \‘_\
- ‘ .
- A 0 ' o~
(h /' \ 'ta

a is in Follow(A); c is in First(A)

Predict Set

* Predict(A — a)
* Predict(A — a) = First(a), if € ¢ First(a);

* Predict(A — o) = First(a)- {e} U Follow(A), if € €
First(o);

Predict Set Example

first

E [{i,n,(}
P: Ell+.¢}
(1) E > TE’ First(TE’)={i, n,(} T [{iin, (}
(2) E> > + TE® First(+TE’)={+} Trapl sty et}
3) E—e Follow(E’)={#,)} F [{in,(}
@) T > FT’ First(FT”)={i,n,}
(5) T’ > * F T First(*FT")={*} Follow
6) T'>¢ | Follow(T)={,+,#} |E |{#)}
(7) F—> (E) | First(E))={ (} B [{#)}
@) F=>1 I First(i)={i} T |{+) #
O Fon Sl pistm)=m T |{+) #

Eh M) #)

Now We consider LL(1)

Simple Predictive Parser: LL(1)

« TJop-down, predictive parsing:
— L: Left-to-right scan of the tokens
— L: Leftmost derivation.
— (1): One token of lookahead

« Construct a leftmost derivation for the sequence of
tokens.
 When expanding a nonterminal, we predict the

production to use by looking at the next token of
the input. The decision is forced.

LL(1) Grammars

« Agrammar Gis LL(1) if and only if the following conditions
hold for two distinctive production rules A—ao and A—

— Both o and cannot derive strings starting with same
terminals.
A—> o4l ayl...| a,, FIRST(ay) " FIRST(oy) = D (1<izj<n)
— At most one of a and 3 can derive to «.
— |f B can derive to g, then o cannot derive to any string
starting with a terminal in FOLLOW(A).
If ecFIRST(B) , then FIRST(a) n FOLLOW(A) = &

NOW predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at the current
input symbol.

Predictive Parser

a grammar => =» a grammar suitable for predictive
eliminate left parsing (a LL(1) grammar)
left recursion factor no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive
parser can uniquely choose a production rule by just looking the
current symbol in the input string.

A->ayl...|a, input: ...a.......

current token

64

Revisit LL(1) Grammar

LL(1) grammars

== there have no multiply-defined entries in the parsing
table.

Properties of LL(1) grammars:

« Grammar can't be ambiguous or left recursive
« Grammar is LL(1) < when A —»a, | B

1, o & B do not derive strings starting with the same
terminal a

2. Either o or 3 can derive g, but not both.

Note: It may not be possible for a grammar to be
manipulated into an LL(1) grammar

65

A Grammar which is not LL(1)

« Aleft recursive grammar cannot be a LL(1) grammar.
— A->Aa|p

 any terminal that appears in FIRST() also appears
FIRST(Aa) because Aa = Ba.

* If Bis g, any terminal that appears in FIRST(a) also
appears in FIRST(Aa) and FOLLOW(A).

« A grammar is not left factored, it cannot be a LL(1) grammar
- A->aPq|ap;
 any terminal that appears in FIRST(a34) also appears
in FIRST(af,).

* An ambiguous grammar cannot be a LL(1) grammar.

Examples

« Example: S —>cAd A —>aala

Left Factoring: S >cAd

A — aB B—al ¢

 Example: S— Sa | *

Eliminate left recursion:

S—»> *B B-—o>aB]|¢

67

A Grammar which is not LL(1) (cont.)

 What do we have to do it if the resulting parsing table
contains multiply defined entries?

—|f we didn’t eliminate left recursion, eliminate the left
recursion in the grammar.

— If the grammar is not left factored, we have to left
factor the grammar.

— If its (new grammar’s) parsing table still contains
multiply defined entries, that grammar is ambiguous
or it is inherently not a LL(1) grammar.

LL(1): a Predictive Parser

Symbol Input token stream
Stack = | | | LL[1]Analysis Table
LL(1) e e —
LL(1) Driver will handle
.5 © Empty stack
e Xe V; =
e Xe Vy

Symbol stack is used to store the intermeddle results for analysis

When reaching the end of input stream; meanwhile the stack is empty,
the string is accepted.

LL(1) Analysis Table: T(A,a) indicates which production should be used
for derivation.

LL(1) Analysis Table

For LL(1) grammar G =(Vy, V1, S, P)

Vry=1al,...,an}, Vy={Al,...,Am}

Am

LL(AIL aj) = Ai— a, if aje predict(Ai— o)

LL(AI, aj) = error(l), if aj does not belong to any
predict(Ai— o)

LL(1) Analysis Table

 Example 1 Production |Predict
3 (1) {a}
1) Z —> aBd (2) {d}
b (3) (c)
(4) B - bB (4) (b}

Z (1)

B 4 | 3) | (@)

LL(1) Analysis Table

e Example 2:

(1) E> TP {i,n, (} + |* () i n |#
(2) 2> +TE {+} E
3) B> ¢ {#,)} @ ol
4) T FD {i,n,0 B 3) 3)
EAL S ALY i @ @@
6) T >e 0.+ #} [+

(6) 6
(7) F— (E) {(} 40) 2
@) Foi o F (7) ®]0©
9 F—>n {n}

LL(1) Driver

METHOD: Initially, the parser is in a configuration with w$ in the
input buffer and the start symbol S of G on top of the stack, above $.

set ip to point to the first symbol of w;
set X to the top stack symbol;
while (X #8§) { /* stack is not empty */
if (X is a) pop the stack and advance ip;
else if (X is a terminal) error();
else if (M[X,a] is an error entry) error();
else if (M[X,a]=X - 11Yo---Yi) {
output the production X — Y7Y5 --- Yy;
pop the stack;
push Y, Yi—1,...,Y] onto the stack, with Y7 on top;

}

set X to the top stack symbol;

Figure 4.20: Predictive parsing algorithm

A complete example

e [L1-example. pdf

Homework

Page 231: Exercise 4.4.1 (b) (d)
Exercise 4.4.3

Homework

T all]]a
Given a grammar G(T), whose productions are: L>LL|T
Where ‘a’” [] areterminal, T and L are non-terminal. T is the starting symbol.

(1) Please write down a left-most derivation for sentence “a[aa]’

(2) Try to eliminate the left-recursion and left factor (let’s denote
the new grammar after this elimination as G’).

(3) For G’, computer the First and Follow set of all non-terminal
symbols;

(4) Construct LL(1) parsing table, tell whether the new grammar G’ is
LL(1) or not.

(5) Write down the process for analyzing “a[a]” with your LL(1) table.

