
Lecture 6: Syntax Analysis
(cont.)

Xiaoyuan Xie 谢晓园
xxie@whu.edu.cn
计算机学院E301

2018/10/20 2

Syntax Analysis

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Generation

IR Optimization

Code Generation

Optimization

3

Source
Code

Machine
Code

Where are we ?

4

Derivations Revisited

• A derivation encodes two pieces of information:

What productions were applied to produce the
resulting string from the start symbol?

In what order were they applied?

• Multiple derivations might use the same productions,
but apply them in a different order.

5

Derivation exercise 1

Productions:

assign_stmt  id := expr ;

expr  expr op term

expr  term

term  id

term  real

term  integer

op  +

op  -

Let’s derive:

id := id + real – integer ;

Please use left-most derivation

assign_stmt assign_stmt  id := expr ;

 id := expr ; expr  expr op term

 id := expr op term ; expr  expr op term

 id := expr op term op term ; expr  term

 id := term op term op term ; term  id

 id := id op term op term; op  +

 id := id + term op term ; term  real

 id := id + real op term ; op  -

 id := id + real - term ; term  integer

 id := id + real - integer;

id := id + real – integer ;

Using production:Left-most derivation:

6

Parse Trees

• A parse tree is a tree encoding the steps in a
derivation.

• Internal nodes represent nonterminal symbols used in
the production.

• Inorder walk of the leaves contains the generated
string.

• Encodes what productions are used, not the order in
which those productions are applied.

7

8

Parse Tree
• Inner nodes of a parse tree are non-terminal symbols.
• The leaves of a parse tree are terminal symbols.
• A parse tree can be seen as a graphical representation of

a derivation.

EX. E  -E  -(E)  -(E+E)  -(id+E)  -(id+id)

E  -E E
E-

E

E

E-

()

 -(E)

E

E

EE

E

+

-

()

 -(E+E)

E
E

E

EE +

-

()

id

 -(id+E)

E

E

id

E
E

E +

-

()

id

 -(id+id)

E  E op E

 id + E op E

 id op E

 id + E

 id + id op E

 id + id * E

 id + id * id

id +

E

E op E

EE op

*id id

9

E  E op E | (E) | -E | id

op  + | - | * | /

10

Parse Trees and Derivations

Consider the expression grammar:

E  E+E | E*E | (E) | -E | id

Leftmost derivations of id + id * id

E  E + E E + E  id + E

E

EE +

id

E

EE *

id + E  id + E * E

E

EE +

id

E

EE +

E

EE *

id + E * E  id + id * E

E

EE +

id

id

id + id * E  id + id * id E

EE *

E

EE +

id

idid

11

Parse Trees and Derivations (cont.)

12

Alternative Parse Tree & Derivation

E  E * E

 E + E * E

 id + E * E

 id + id * E

 id + id * id

E

E E+

E

E E*

id

id id

WHAT’S THE ISSUE HERE ?

Two distinct leftmost derivations!

Challenges in Parsing

13

14

Ambiguity

• A grammar produces more than one parse tree for a
sentence is called as an ambiguous grammar.

E  E+E  id+E  id+E*E
 id+id*E  id+id*id

E  E*E  E+E*E  id+E*E
 id+id*E  id+id*id

E

id

E +

id

id

E

E

* E

E

E +

id E

E

* E

id id

two parse trees for id+id*id.

15

Is Ambiguity a Problem?

Depends on semantics.

E

id

E +

id

id

E

E

* E

E

E +

id E

E

* E

id id

16

Resolving Ambiguity

• If a grammar can be made unambiguous at all, it
is usually made unambiguous through layering.

• Have exactly one way to build each piece of the
string?

• Have exactly one way of combining those pieces
back together?

17

• For the most parsers, the grammar must be unambiguous.

• unambiguous grammar

•  unique selection of the parse tree for a sentence

• We should eliminate the ambiguity in the grammar during the
design phase of the compiler.

Resolving Ambiguity

18

Ambiguity – Operator Precedence

• Ambiguous grammars (because of ambiguous operators) can be
disambiguated according to the precedence and associativity rules.

E  E+E | E*E | E^E | id | (E)

disambiguate the grammar

precedence: ^ (right to left)

* (left to right)

+ (left to right)

E  E+T | T
T  T*F | F
F  G^F | G
G  id | (E)

Rewrite to eliminate the ambiguity

Or, simply tell which parse tree should be selected

19

A Parser

Parser

Context free
grammar, G

Token stream, s
(from lexer)

Yes, if s in L(G)
No, otherwise

Error messages

• Syntax analyzers (parsers) = CFG acceptors which also
output the corresponding derivation when the token stream
is accepted

• Various kinds: LL(k), LR(k), SLR, LALR

20

Types

• Top-Down Parsing

• Recursive descent parsing

• Predictive parsing

• LL(1)

• Bottom-Up Parsing

• Shift-Reduce Parsing

• LR parser

21

Homework

Page 206: Exercise 4.2.1
Page 207: Exercise 4.2.2 (d) (f) (g)

2018/10/20 22

Top-Down Parsing

Two Key Points

– Q1: Which non-terminal to be replaced?

Leftmost derivation

– Q2: Which production to be used?

expression => term
=> term*factor
=> term/factor*factor

24

Top-Down Parsing

The parse tree is created top to bottom (from root to leaves).
By always replacing the leftmost non-terminal

symbol via a production rule, we are guaranteed of
developing a parse tree in a left-to-right fashion that is
consistent with scanning the input.

Pushdown Automaton

An illustration with PDA

P:
(1) Z  aBeA
(2) A  Bc
(3) B  d
(4) B  bB
(5) B  

a b e c

Reading
Head Derivation

Zabec

Analysis

Z production starting
with a？- (1)

Stack

aBeA

Match?

a

bec BeA B production starting
with b？ -(4)

bBeA b

ec BeA B production starting
with e？-(5)

eA e

c A A production starting
with c? -(2)(5)

An illustration with PDA

P:
(1) Z  aBeA
(2) A  Bc
(3) B  d
(4) B  bB
(5) B  

a b e c

Reading
Head

Analysis

c A A production
starting with c?-(2)

Bc

c Bc A production starting
with c? -(5)

c c

Stack Derivation Match?

28

Problem - Backtraking

• General category of Top-Down Parsing

• Choose production rule based on input symbol

• May require backtracking to correct a wrong choice.

•Example: S  c A d
A  ab | a

input: cad
cad S

c dA

cad
S

c dA

a b

cad
S

c dA

a b Problem: backtrack

cad
S

c dA

a

cad
S

c dA

a

Problem – Left recursion

• A grammar is Left Recursion if it has a nonterminal A
such that there is a derivation A + A for some string .

Term

Num*Term

Term
Term

Num*Term

Term

Num*

……

Left Recursion + top-down parsing = infinite loop
Eg. Term  Term*Num

• Eliminating Direct Left Recursion

βiαi*βiαi*

Elimination of Left recursion

31

Elimination of Left recursion

• A  A |

elimination of left recursion

P P P  P|

• P P1| P2|…| P m | 1 | 2|… | n

• elimination of left recursion

P 1 P| 2 P|…| nP
P 1 P| 2 P|…| mP| 

1

32

Elimination of Left recursion (eg.)

• G[E]: E  E+T|T
T  T*F|F
F  (E)| I

Elimination of Left Recursion

E  TE
E  +TE|
T  FT
T  *FT|
F  (E)| i

Elimination of Left recursion (eg.)

P PaPb|BaP
• We have α = aPb, β=BaP
• So, P βP’

P’ αP’|ε
• 改写后：P BaPP’

P’ aPbP’|ε

Multiple P? Consider the most-left one.

34

Elimination of Indirect Left recursion

1

Direct：

Indirect： , , then we have

e.g：S → Aa | b, A → Sd |ε
S => Aa => Sda

35

Elimination of Left recursion algorithm

S A b
A  S a | b

1:S
2:A

A  Aba | b

A  bA’
A’  baA’ | 

Elimination of Left recursion (eg.)

S → Aa | b,
A → Ac | Sd |ε

1:S
2:A

S → Aa | b,
A → Ac | Aad | bd |ε
S → Aa | b,
A →bdA’ | A’
A’ → cA’ | adA’ |ε

Elimination of Left recursion (eg.)

S  Qc | c
Q  Rb | b
R  S a | a

1:S
2:Q
3:R
S  Qc | c
Q  Rb | b
R  Sa | a
 (Qc|c)a | a
Qca | ca |a
(Rb|b)ca | ca | a

S  Qc | c
Q  Rb | b
R  (bca | ca | a)R’
R’  bcaR’ | 

Elimination of Left recursion (eg.)

S  Qc | c
Q  Rb | b
R  S a | a

1:R
2:Q
3:S
R  Sa | a
Q  Rb | b  Sab | ab | b
S  Qc | c  Sabc | abc | bc | c

S  (abc | bc | c)S’
S’  abcS’ | 

Elimination of Left recursion (eg.)

40

Problem - Left Factoring

• A  1 | 2

A A A  1 | 2

• A 1 | 2|… | n |

A A|
A 1 | 2|… | n

41

Problem - Left Factoring

• E.g
– S iEtS | iEtSeS | a

Eb

– For, S, the longest pre-fix is iEtS, Thus,

S iEtSS’ | a

S’  eS| 
Eb

Problem - Left Factoring

• E.g.
G：
(1) S→aSb
(2) S→aS
(3) S→ε

For (1)、(2)， extract the left factor：
S→ aS(b|ε)
S→ε

We have G′：
S→aSA
A→b
A→ε
S→ε

Problem - Left Factoring

44

Homework

Page 216: Exercise 4.3.1

2018/10/20 45

Two Parsing Methods

46

A Naïve Method
– Recursive-Descent Parsing

• Backtracking is needed (If a choice of a production rule does
not work, we backtrack to try other alternatives.)

• It is a general parsing technique, but not widely used.

• Not efficient

47

Recursive-Descent Parsing

A typical procedure for a nonterminal in a top-down parse

• Example

P:
(1) Z  aBd {a}
(2) B  d {d}
(3) B  c {c}
(4) B  bB {b}

Z ()
{
if (token == a)
{ match(a);

B();
match(d);

}
else error();
}

B ()
{
case token of
d: match(d);break;
c: match(c); break;
b:{ match(b);

B(); break;}
other: error();

}
a b c d

void main()
{read();
Z(); }

Recursive-Descent Parsing

49

A Non-Recursive Method

– Predictive Parsing

• no backtracking, efficient

• needs a special form of grammars (LL(1) grammars).

• Non-Recursive (Table Driven) Predictive Parser is also

known as LL(1) parser.

– Predict(A )
– First()
– Follow(A)

A Non-Recursive Method

FIRST Set

E {i, n , (}
E’ { + ,  }

T { i, n , (}

T’ { *,  }

F { i, n , (}

P:
(1) E  TE’
(2) E’  + TE’
(3) E’  
(4) T  FT’
(5) T’  * F T’
(6) T’  
(7) F  (E)
(8) F  i
(9) F  n

 First()

First(E’T’E) =？
First(T’E’) = ？

S = {E’, T’}

First(E’T’E) = {+,*,i,n,(}
First(T’E’) = {+,*,}

FIRST Example

53

Motivation Behind FIRST

• Is used to help find the appropriate reduction
to follow given the top-of-the-stack non-
terminal and the current input symbol.

• If A   , and a is in FIRST(), then when
a=input, replace A with . (a is one of first
symbols of , so when A is on the stack and a
is input, POP A and PUSH .)

Example: A  aB | bC
B  b |dD
C  c
D  d

54

FOLLOW Set

55

FOLLOW Set (cont.)

E {#,)}

E’ {#,)}

T {+,), #}

T’ {+,), #}

F {*, +,), #}

E {i, n , (}
E’ { + ,  }
T { i, n , (}

T’ { *,  }
F { i, n ,

(}

First(X) Follow(X)
P:
(1) E  TE’
(2) E’  + TE’
(3) E’  
(4) T  FT’
(5) T’  * F T’
(6) T’  
(7) F  (E)
(8) F  i
(9) F  n

FOLLOW Set Example

57

Motivation Behind FOLLOW

• Is used when FIRST has a conflict, to
resolve choices, or when FIRST gives no
suggestion. When    or  * , then
what follows A dictates the next choice to
be made.

• If A   , and b is in FOLLOW(A), then
when  *  and b is an input character,
then we expand A with  , which will
eventually expand to , of which b follows!
( *  : i.e., FIRST() contains .)

Motivation Behind FOLLOW

a is in Follow(A); c is in First(A)

S=>*αAaβ

Predict Set

• Predict(A  )
• Predict(A  ) = First(), if   First();

• Predict(A  ) = First()- {}  Follow(A), if  
First();

Predict Set Example

E {i, n , (}
E’ { + ,  }
T { i, n , (}
T’ { *,  }
F { i, n , (}

P:
(1) E  TE’
(2) E’  + TE’
(3) E’  
(4) T  FT’
(5) T’  * F T’
(6) T’  
(7) F  (E)
(8) F  i
(9) F  n

E {#,)}
E’ {#,)}
T {+,), #}
T’ {+,), #}
F {*, +,), #}

first

Follow

First(TE’)={i, n,(}

First(+TE’)={+}
Follow(E’)={#,)}
First(FT’)={i,n,(}
First(*FT’)={*}
Follow(T’)={),+, # }
First((E))={ (}

First(i)={i}

First(n)={n}

Now We consider LL(1)

62

Simple Predictive Parser: LL(1)

• Top-down, predictive parsing:
– L: Left-to-right scan of the tokens

– L: Leftmost derivation.

– (1): One token of lookahead

• Construct a leftmost derivation for the sequence of
tokens.

• When expanding a nonterminal, we predict the
production to use by looking at the next token of
the input. The decision is forced.

63

LL(1) Grammars

• A grammar G is LL(1) if and only if the following conditions
hold for two distinctive production rules A   and A  
– Both  and  cannot derive strings starting with same

terminals.

A 1| 2|…| n, FIRST(i)  FIRST(j) =  (1ijn)

– At most one of  and  can derive to .
– If  can derive to , then  cannot derive to any string

starting with a terminal in FOLLOW(A).
If FIRST() ， then FIRST()  FOLLOW(A) = 

NOW predictive parsers can be constructed for LL(1) grammars since the proper
production to apply for a nonterminal can be selected by looking only at the current
input symbol.

64

Predictive Parser

a grammar   a grammar suitable for predictive
eliminate left parsing (a LL(1) grammar)

left recursion factor no %100 guarantee.

When re-writing a non-terminal in a derivation step, a predictive
parser can uniquely choose a production rule by just looking the
current symbol in the input string.

A  1 | ... | n input: ... a

current token

65

Revisit LL(1) Grammar

LL(1) grammars

== there have no multiply-defined entries in the parsing
table.

Properties of LL(1) grammars:

• Grammar can’t be ambiguous or left recursive
• Grammar is LL(1)  when A 

1.  &  do not derive strings starting with the same
terminal a

2. Either  or  can derive , but not both.

Note: It may not be possible for a grammar to be
manipulated into an LL(1) grammar

66

A Grammar which is not LL(1)

• A left recursive grammar cannot be a LL(1) grammar.
– A  A | 

• any terminal that appears in FIRST() also appears
FIRST(A) because A  .

• If  is , any terminal that appears in FIRST() also
appears in FIRST(A) and FOLLOW(A).

• A grammar is not left factored, it cannot be a LL(1) grammar
– A  1 | 2

• any terminal that appears in FIRST(1) also appears
in FIRST(2).

• An ambiguous grammar cannot be a LL(1) grammar.

67

Examples

• Example: S  c A d A  aa | a
Left Factoring: S  c A d A  aB B  a | 

• Example： S Sa | 
Eliminate left recursion: S B B  aB | 

68

A Grammar which is not LL(1) (cont.)

• What do we have to do it if the resulting parsing table
contains multiply defined entries?

– If we didn’t eliminate left recursion, eliminate the left
recursion in the grammar.

– If the grammar is not left factored, we have to left
factor the grammar.

– If its (new grammar’s) parsing table still contains
multiply defined entries, that grammar is ambiguous
or it is inherently not a LL(1) grammar.

LL(1)

Symbol
Stack

Input token stream

a

LL(1) Driver will handle
 Empty stack
 X VT

 X VN

X

LL[1]Analysis Table

 Symbol stack is used to store the intermeddle results for analysis

 When reaching the end of input stream; meanwhile the stack is empty,
the string is accepted.

 LL(1) Analysis Table: T(A,a) indicates which production should be used
for derivation.

LL(1): a Predictive Parser

LL(1) Analysis Table

a1 … an #

A1

… …. …. …

Am

For LL(1) grammar G = (VN, VT, S, P)

VT = {a1, …, an}，VN = {A1, …, Am}

LL(Ai, aj) = Ai , if aj predict(Ai )

LL(Ai, aj) = error(), if aj does not belong to any
predict(Ai )

• Example 1

LL(1) Analysis Table

Production Predict
(1) {a}
(2) {d}
(3) {c}
(4) {b}

P:
(1) Z  aBd
(2) B  d
(3) B  c
(4) B  bB

a b c d #

Z (1)

B (4) (3) (2)

• Example 2：

(1) E  TE’ { i, n, (}
(2) E’  + TE’ {+}
(3) E’   {#,)}
(4) T  FT’ {i,n,(}
(5) T’  * F T’ {*}
(6) T’   {),+, # }
(7) F  (E) { (}
(8) F  i {i}
(9) F  n {n}

+ * () i n #

E

E’

T

T’

F

(1) (1) (1)

(2) (3)(3)

(4) (4)(4)

(5) (6)(6) (6)

(7) (8) (9)

LL(1) Analysis Table

LL(1) Driver
METHOD: Initially, the parser is in a configuration with w$ in the
input buffer and the start symbol S of G on top of the stack, above $.

• LL1-example.pdf

A complete example

75

Homework

Page 231: Exercise 4.4.1 (b) (d)
Exercise 4.4.3

76

Homework

Given a grammar G(T), whose productions are:
Where ‘a’ ‘[‘ ‘]’ are terminal, T and L are non-terminal. T is the starting symbol.

(1) Please write down a left-most derivation for sentence “a[aa]”
(2) Try to eliminate the left-recursion and left factor (let’s denote

the new grammar after this elimination as G’).
(3) For G’, computer the First and Follow set of all non-terminal

symbols;
(4) Construct LL(1) parsing table, tell whether the new grammar G’ is

LL(1) or not.
(5) Write down the process for analyzing “a[a]” with your LL(1) table.

T  a[L] | a
L  LL | T

