Lecture 8: Bottom-up Analysis

Xiaoyuan Xie 谢晓园

xxie@whu.edu.cn School of Computer Science E301

In A Nutshell

What is Bottom-Up Parsing?

- Idea: Apply productions in reverse to convert the user's program to the start symbol.
 - We can think of bottom-up parsing as the process of "reducing" a string w to the start symbol of the grammar. At each reduction step, a specific substring matching the body of a production is replaced by the nonterminal at the head of that production.
- Keywords
 - Reductions, handle, shift-reduce parsing, conflicts, LR grammars

What is Bottom-Up Parsing?

- Four major directional, predictive bottom-up parsing techniques:
 - Directional: Scan the input from left-to-right.
 - Predictive: Guess which production should be inverted.
 - The largest class of grammars for which shiftreduce parsers can be built, the LR grammars: LR(0), SLR(0), LR(1), LALR(1)

A View of a Bottom-Up Parse

```
E \rightarrow T
E \rightarrow E + T
T → int
T \rightarrow (E)
 int + (int + int + int)
 \Rightarrow T + (int + int + int)
 \Rightarrow E+ (int + int + int)
 \Rightarrow E+ (T + int + int)
\Rightarrow E+ (E + int + int)
 \Rightarrow E+ (E + T + int)
 \Rightarrow E+ (E + int)
\Rightarrow E+(E+T)
 \Rightarrow E+(E)
 \Rightarrow E + T
 \Rightarrow \mathsf{E}
```


A left-to-right, bottom-up parse is a rightmost derivation traced in reverse.

A View of a Bottom-Up Parse

```
int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E+ (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E+ (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E+ (E + int)
\Rightarrow E+(E+T)
\Rightarrow E+(E)
\Rightarrow E + T
\Rightarrow \mathsf{E}
```

Each step in this bottom-up parse is called a reduction. We reduce a substring of the sentential form back to a nonterminal (start symbol).

```
\mathsf{E} \to \mathsf{T}
 E → E + T A View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
  int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                      int
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
                                                               int
\Rightarrow E + (E)
\Rightarrow E + T
                                                     int
\Rightarrow E
                                                     |int| + |int| + |int|
                                      int
```

int

```
\mathsf{E} \to \mathsf{T}
 E → E + T A View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
  int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                      int
\Rightarrow E + (E + T + int)
                                                                        int
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
                                                              int
\Rightarrow E + (E)
\Rightarrow E + T
                                                     int
\Rightarrow E
                                      int
                                                    |int| + |int| + |int|
```

```
\mathsf{E} \to \mathsf{T}
 E → E + T A View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
  int + (int + int + int)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
                                      int
\Rightarrow E + (E + T + int)
                                                                        int
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
                                                              int
\Rightarrow E + (E)
\Rightarrow E + T
                                                     int
\Rightarrow E
                                                    |int| + |int| + |int|
                                      int
```

```
\mathsf{E} \to \mathsf{T}
 E → E + TA View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
\Rightarrow T + (int + int + int)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```



```
\mathsf{E} \to \mathsf{T}
 E → E + TA View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```



```
\mathsf{E} \to \mathsf{T}
 E → E + TA View of a Bottom-Up Parse
 T → int
T \rightarrow (E)
\Rightarrow E + (int + int + int)
\Rightarrow E + (T + int + int)
\Rightarrow E + (E + int + int)
\Rightarrow E + (E + T + int)
\Rightarrow E + (E + int)
\Rightarrow E + (E + T)
\Rightarrow E + (E)
\Rightarrow E + T
\Rightarrow E
```



```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```

```
⇒ E + (T + int + int)
⇒ E + (E + int + int)
⇒ E + (E + T + int)
⇒ E + (E + int)
⇒ E + (E + T)
⇒ E + (E)
⇒ E + T
```

 $T \rightarrow (E)$

 \Rightarrow E


```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```

```
⇒ E + (T + int + int)
⇒ E + (E + int + int)
⇒ E + (E + T + int)
⇒ E + (E + int)
⇒ E + (E + T)
⇒ E + (E)
⇒ E + T
⇒ E
```



```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```



```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```


$$T \rightarrow (E)$$

$$T \rightarrow (E)$$


```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```



```
E → T
E → E + TA View of a Bottom-Up Parse
T → int
```


T → (**E**)

T → **(E)**

 $T \rightarrow (E)$

Ε

$$\Rightarrow$$
 E

int + (int	+	int	+	int)
---------	-----	---	-----	---	-----	---

Preliminaries

How to build a predictive bottom-up parser?

Sentential form

- For a grammar G with start symbol S A string α is a sentential form of G if S \Rightarrow * α
 - α may contain terminals and nonterminals
 - If α is in T*, then α is a sentence of L(G)
- Left sentential form: A sentential form that occurs in the leftmost derivation of some sentence
- Right sentential form: A sentential form that occurs in the rightmost derivation of some sentence

- Example of the sentential form
 - $-E \rightarrow E * E | E + E | (E) | id$
 - Leftmost derivation:

$$E \Rightarrow E + E \Rightarrow E * E + E \Rightarrow id * E + E \Rightarrow id * id + E \Rightarrow$$
 $id * id + E * E \Rightarrow id * id + id * E \Rightarrow id * id + id * id$

- All the derived strings are of the left sentential form
- Rightmost derivation

$$E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * id \Rightarrow E + id * id \Rightarrow$$

 $E * E + id * id \Rightarrow E * id + id * id \Rightarrow id * id + id * id$

All the derived strings are of the right sentential form

A Small example

$$E \rightarrow E + T | T$$
 $T \rightarrow T * F | F$
 $F \rightarrow (E) | id$

A Rightmost Derivation:

$$E \rightarrow E + T$$

$$\rightarrow E + T * F$$

$$\rightarrow E + T * id$$

$$\rightarrow E + F * id$$

$$\rightarrow E + id * id$$

$$\rightarrow T + id * id$$

$$\rightarrow E + id * id$$

$$\rightarrow G * id * id$$

$$\rightarrow G * id * id$$

The Parsing Problem

- Given a right sentential form, α , determine what substring of α is the **right-hand side (RHS)** of the rule in the grammar that must be reduced to produce the previous sentential form in the right derivation
- The correct RHS is called the handle

- Informally, a handle of a string is a substring that matches the right side of a production rule.
 - But not every substring matches the right side of a production rule is handle
 - Reduction of a handle represents one step along the reverse of a rightmost derivation

• A **handle** of a right sentential form $\gamma (\equiv \alpha \beta \omega)$ is a production rule $A \rightarrow \beta$ and a position of γ where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ .

$$S \stackrel{rm}{\Rightarrow} \alpha A \omega \stackrel{rm}{\Rightarrow} \alpha \beta \omega$$

Alternatively, a handle of a right-sentential form γ is a production A → β and a position of γ where the string β may be found, such that replacing β at that position by A produces the previous right-sentential form in a rightmost derivation of γ.

Handle

- Given a rightmost derivation

$$S \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \dots \Rightarrow \gamma_k \Rightarrow \gamma_{k+1} \Rightarrow \dots \Rightarrow \gamma_n$$

- γ_i , for all i, are the right sentential forms
- $\gamma_k = \alpha Aw$; $\gamma_{k+1} = \alpha \beta w$
- From γ_k to γ_{k+1} , production $A \to \beta$ is used
- For convenience, we refer to the body β rather than A $\rightarrow \beta$ as a handle.

 Def: β is the <u>handle</u> of the right sentential form

 $\gamma = \alpha \beta w$ if and only if S =>*rm αAw =>rm $\alpha \beta w$

E → E + T Let
$$\gamma = \alpha \beta w$$
 be
→ E + T * F E + E * id
→ E + T * id What is β?
→ E + E * id What is w?
What is α? What is A?

– Def: β is a <u>phrase</u> of the right sentential form γ if and only if S =>* γ = $\alpha_1 A \alpha_2$ =>+ $\alpha_1 \beta \alpha_2$

$$\begin{array}{ll} E \rightarrow \underline{E+T} & \text{Let } \gamma = \alpha_1 A \alpha_2 \text{ be} \\ \rightarrow E + \underline{T*F} & \underline{E+T} \\ \rightarrow E + T*\underline{id} & \text{Let A be T.} & \text{What is } \alpha_1? & \alpha_2? \\ & \text{What can } \beta \text{ be?} \end{array}$$

– Def: β is a <u>simple phrase</u> of the right sentential form γ if and only if S =>* γ = $\alpha_1 A \alpha_2$ => $\alpha_1 \beta \alpha_2$

```
E \rightarrow \underline{E+T} \qquad \text{Let } \gamma = \alpha_1 A \alpha_2 \text{ be} \rightarrow E + \underline{T*F} \qquad \underline{E+T} \rightarrow E + T*\underline{id} \qquad \text{Let A be T.} \quad \text{What is } \alpha_1? \quad \alpha_2? What can \beta be?
```

 The handle of any rightmost sentential form is its leftmost simple phrase

Handles

- The handle of a parse tree *T* is the leftmost complete cluster of leaf nodes.
- A left-to-right, bottom-up parser works by iteratively searching for a handle, then reducing the handle.

RIGHT SENTENTIAL FORM	HANDLE	REDUCING PRODUCTION
$\mathbf{id}_1 * \mathbf{id}_2$	\mathbf{id}_1	$F o \mathbf{id}$
$F*\mathbf{id}_2$	F	$T \to F$
$T*\mathbf{id}_2$	\mathbf{id}_2	$F o \mathbf{id}$
T*F	T * F	$E \to T * F$

Figure 4.26: Handles during a parse of $id_1 * id_2$

Example

P

(1)
$$E \rightarrow T$$

(2)
$$E \rightarrow E + T$$

(3)
$$T \rightarrow F$$

$$(4) T \rightarrow T * F$$

$$(5) \mathbf{F} \to (\mathbf{E})$$

(6)
$$F \rightarrow i$$

(7)
$$F \rightarrow n$$

Sentential Form: T+ (E+T)*i

A derivation of this sentential form (not a rightmost derivation)

$$E \Rightarrow E + T \Rightarrow E + T^*F \Rightarrow E + T^*i \Rightarrow$$

$$E+F*i \Rightarrow E+(E)*i \Rightarrow E+(E+T)*i$$

$$\Rightarrow$$
 T+(E+T)*i

Phrases: T +(E+T)*i, T, E+T, i, (E+T), (E+T)*i

Simple phrases: T, E+T, i

Handle: T

Given a sentential form, build a parsing tree, then it will be easy to identify a handle

Illustration via Parse Tree

Sentential form: leave nodes (from left to right)

T+ (E+T)*i

Phrases: leave nodes of each subtree
T+(E+T)*i, T, (E+T)*i, (E+T), E+T, i

Simple phrase: leave nodes of all simple subtree (i.e. a subtree with only one level of leaves)
T, E+T, i

Handle: leave nodes of the leftmost simple subtreeT

Handle Pruning

 A right-most derivation in reverse can be obtained by handlepruning.

```
• S=\gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \dots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n = \omega• input string
```

- Start from γ_n, find a handle A_n→β_n in γ_n, and replace β_n in by A_n to get γ_{n-1}.
- Then find a handle $A_{n-1} \rightarrow \beta_{n-1}$ in γ_{n-1} , and replace β_{n-1} in by A_{n-1} to get γ_{n-2} .
- · Repeat this, until reach the start nonterminal S.

Homework

Page 240, 4.5.1

Page 241, 4.5.3(a)

LR Parsing

2018/11/4

The Parsing Problem

- Produce a parse tree starting at the leaves
- The order will be that of a rightmost derivation
- The most common bottom-up parsing algorithms are in the LR family
 - L Read the input left to right
 - R Trace out a rightmost parse tree

Meaning of LR

- L: Process input from left to right
- R: Use rightmost derivation, but in reversed order
- E ⇒ E + E ⇒ E + E * E ⇒ E + E * id ⇒ E + id * id
 ⇒ E * E + id * id ⇒ E * id + id * id ⇒ id * id + id * id

LR Parsers Use Shift-Reduce

- Shift-Reduce Algorithms
 - Reduce: replace the handle on the top of the parse stack with its corresponding LHS
 - Shift: move the next token to the top of the parse stack

LR Parsers Use Shift-Reduce

STACK	INPUT	ACTION
\$	$id_1 * id_2 $ \$	shift
$\mathbf{\$id}_1$	$*$ \mathbf{id}_2 $\$$	reduce by $F \to id$
F	$*$ \mathbf{id}_2 $\$$	reduce by $T \to F$
T	$*$ \mathbf{id}_2 $\$$	shift
T*	$\mathbf{id}_2\$$	\mathbf{shift}
$T * id_2$	\$	reduce by $F \to id$
T * F	\$	reduce by $T \to T * F$
\$T	\$	reduce by $E \to T$
\$E	\$	accept

Figure 4.28: Configurations of a shift-reduce parser on input $id_1 * id_2$

Shift/Reduce/Accept/Error

A Shift-Reduce Parser

- $E \rightarrow E+T \mid T$
- Right-Most Derivation of id+id*id
- $T \rightarrow T^*F \mid F$
- $E \Rightarrow E+T \Rightarrow E+T*F \Rightarrow E+T*id \Rightarrow E+F*id$

• $F \rightarrow (E) \mid id$

 \Rightarrow E+id*id \Rightarrow T+id*id \Rightarrow F+id*id \Rightarrow id+id*id

Right-Most Sentential Form

Reducing Production

id+id*id

F#id*id

T+id*id

E+id*id

E#F*id

E#T*id

E+T

E

 $F \rightarrow id$

 $T \rightarrow F$

 $E \rightarrow T$

 $F \rightarrow id$

 $T \rightarrow F$

 $F \rightarrow id$

 $T \rightarrow T^*F$

 $E \rightarrow E + T$

Handles are red and underlined in the right-sentential forms.

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

$$E \rightarrow F$$
 $E \rightarrow E + F$
 $F \rightarrow F * T$
 $F \rightarrow T$
 $T \rightarrow int$
 $T \rightarrow (E)$

Bottom-up Parsing

- Traverse rightmost derivation backwards
 - If reduction is done arbitrarily
 - It may not reduce to the starting symbol
 - Need backtracking
 - If we follow the path of rightmost derivation
 - All the reductions are guaranteed to be "correct"
 - Guaranteed to lead to the starting symbol without backtracking
 - That is: If it is always possible to correctly find the handle

Key: Finding Handles

- Where do we look for handles?
 - Where in the string might the handle be?
- How do we search for possible handles?
 - Once we know where to search, how do we identify candidate handles?
- How do we recognize handles?
 - Once we've found a candidate handle, how do we check that it really is the handle?
 - Use a stack to keep track of the viable prefix
 - The prefix of the handle will always be at the top of the stack

If a prefix of a right-sentential form:

 $-Z \Rightarrow ABb$: Consider prefixes AB, ABb

- Z ⇒ + Acb: Consider prefixes A, Ac, Acb

- Viable prefixes are:
 - Prefixes that do not contain simple phrases; or
 - Prefixes containing one simple phrase that are at the end of this prefix --that is, this simple phrase is the handle.
- A viable prefix does not contain any symbol after a handle.

■ Eg.

- $(1) Z \rightarrow ABb$
- $(2) A \rightarrow a$
- $(3) A \rightarrow b$
- $(4) B \rightarrow d$
- $(5) B \rightarrow c$
- $(6) B \rightarrow bB$

 $Z \Rightarrow ABb$

Consider prefixes: AB, ABb

Viable prefixes are: AB(no simple phrase)

ABb (one simple phrase, which is at the end of the prefix)

 $Z \Rightarrow + abcb$

Consider prefixes: a, ab, abc, abcb

Viable prefix: a (contain one simple phrase)

ab, abc, abcd are not viable prefix

- Two types of viable prefix
 - Nonreducible (for shift operation): no simple phrase, need to shift more symbols to form the first leftmost simple phrase (i.e. handle)
 - Reducible (for reduction operation): contain one simple phrase, at the end of the

```
(1) Z \rightarrow ABb
```

$$(2) A \rightarrow a$$

$$(3) A \rightarrow b$$

$$(4) B \rightarrow d$$

$$(5) B \rightarrow c$$

(6)
$$B \rightarrow bB$$

 $Z \Rightarrow ABb$ Viable prefixes:

AB(no simple phrase) --- nonreducible

ABb (contain a simple phrase) --- reducible

Bottom-up Parsing

- Shift-reduce operations in bottom-up parsing
 - Shift the input into the stack
 - Wait for the current handle to complete or to appear
 - Or wait for a handle that may complete later
 - Reduce
 - Once the handle is completely in the stack, then reduce
 - The operations are determined by the parsing table

- LR(0) Item of a grammar G
 - Is a production of G with a distinguished position
 - Position is used to indicate how much of the handle has already been seen (in the stack)
 - For production S → a B S, items for it include

```
S \rightarrow \bullet a B S
```

$$S \rightarrow a \bullet B S$$

$$S \rightarrow a B \cdot S$$

$$S \rightarrow a B S \bullet$$

- Left of are the parts of the handle that has already been seen
- When reaches the end of the handle ⇒ reduction
- For production $S \to \varepsilon$, the single item is

$$S \rightarrow \bullet$$

- Closure function Closure(I)
 - I is a set of items for a grammar G
 - Every item in I is in Closure(I),
 - if A $\rightarrow \alpha \bullet$ B β is in Closure(I) and B $\rightarrow \gamma$ is a production in G, then add B $\rightarrow \bullet \gamma$ to Closure(I)
 - If it is not already there
 - Meaning
 - When α is in the stack and B is expected next
 - One of the B-production rules may be used to reduce the input to B
 May not be one-step reduction though
 - Apply the rule until no more new items can be added

- CLOSURE(IS)Example

```
V_{T} = \{a, b, c\}
V_{N} = \{S, A, B\}
S = S
P:
\{S \rightarrow aAc
A \rightarrow ABb
A \rightarrow Ba
B \rightarrow b
\}
```

```
IS = \{S \rightarrow \bullet aAc\}
CLOSURE(IS) = \{S \rightarrow \bullet aAc\}
```

```
IS = \{S \rightarrow a \bullet Ac\}
CLOSURE(IS)
= \{S \rightarrow a \bullet Ac,
A \rightarrow \bullet ABb, A \rightarrow \bullet Ba,
B \rightarrow \bullet b\}
```

- Goto function Goto(I,X)
 - X is a grammar symbol
 - If A →α X β is in I then A →α X β is in Goto(I, X)
 - Let J denote the set constructed by this step
 - All items in Closure(J) are in Goto(I, X)
 - Meaning
 - If I is the set of valid items for some viable prefix γ
 - Then goto(I, X) is the set of valid items for the viable prefix
 γX

- Augmented grammar
 - G is the grammar and S is the staring symbol
 - Construct G' by adding production S' → S into G
 - S' is the new starting symbol
 - E.g.: G: $S \rightarrow \alpha \mid \beta \Rightarrow G'$: $S' \rightarrow S$, $S \rightarrow \alpha \mid \beta$

Meaning

- The starting symbol may have several production rules and may be used in other non-terminal's production rules
- Add S' → S to force the starting symbol to have a single production
- When S' → S is seen, it is clear that parsing is done

- · Complete process: Given a grammar G
 - Step 1: augment G
 - Step 2: initial state
 - Construct the valid item set "I" of State 0 (the initial state)
 - Add S' → S into I
 - All expansions have to start from here
 - Compute Closure(I) as the complete valid item set of state 0
 - All possible expansions S can lead into
 - Step 3:
 - From state I, for all grammar symbol X
 Construct J = Goto(I, X)
 Compute Closure(J)
 - Create the new state with the corresponding Goto transition
 - Only if the valid item set is non-empty and does not exist yet
 - Repeat Step 3 till no new states can be derived

Grammar G:

```
S \rightarrow E
      E \rightarrow E + T \mid T
      T \rightarrow id \mid (E)
- Step 1: Augment G
      S' \rightarrow S S \rightarrow E E \rightarrow E + T \mid T T \rightarrow id \mid (E)
– Step 2:

    Construct Closure(I<sub>0</sub>) for State 0
```

- First add into I₀: S' → S
- Compute Closure(I₀)

$$S' \rightarrow \bullet S$$

 $S \rightarrow \bullet E$
 $E \rightarrow \bullet E + T$
 $E \rightarrow \bullet T$
 $T \rightarrow \bullet id$
 $T \rightarrow \bullet (E)$

```
    Step 3

                                                                                        S' \rightarrow \bullet S \qquad S \rightarrow \bullet E
                                                                                        E \rightarrow \bullet E + T \qquad E \rightarrow \bullet T
      -I_1
                                                                                        T \rightarrow \bullet id \quad T \rightarrow \bullet (E)

 Add into I₁: Goto(I₀, S) = S' → S •

    No new items to be added to Closure (I<sub>1</sub>)

      - I_2
             • Add into I_2: Goto(I_0, E) = S \rightarrow E \bullet E \rightarrow E \bullet + T

    No new items to be added to Closure (I<sub>2</sub>)

      -1<sub>3</sub>

 Add into I<sub>3</sub>: Goto(I<sub>0</sub>, T) = E → T •

    No new items to be added to Closure (I<sub>3</sub>)

             • Add into I_4: Goto(I_0, id) = T \rightarrow id •

    No new items to be added to Closure (I<sub>4</sub>)
```

- No more moves from I₀
- No possible moves from I₁
- I₆
 - Add into I₆: Goto(I₂, +) = E → E + T
 - Closure(I₅)
 T → id T → (E)
- No possible moves from I₃ and I₄

$$I_{0}:$$

$$S' \to \bullet S \qquad S \to \bullet E$$

$$E \to \bullet E + T \qquad E \to \bullet T$$

$$T \to \bullet id \qquad T \to \bullet (E)$$

```
    Step 3

     -I_7

    Add into I<sub>7</sub>: Goto(I<sub>5</sub>, E) =

                  T \rightarrow (E \bullet) \qquad E \rightarrow E \bullet + T

    No new items to be added to Closure (I<sub>7</sub>)

      - Goto(I_5, T) = I_3
     - Goto(I_5, id) = I_4
      - \text{Goto}(I_5, "(") = I_5)

    No more moves from I<sub>5</sub>

     -I_8

 Add into I<sub>8</sub>: Goto(I<sub>6</sub>, T) = E → E + T •

    No new items to be added to Closure (I<sub>8</sub>)

      - Goto(I_6, id) = I_4
      - \text{Goto}(I_6, "(") = I_5)
```

- Step 3
 - $-I_9$
 - Add into I₉: Goto(I₇, ")") =
 T → (E) •
 - No new items to be added to Closure (I₉)
 - $-Goto(I_7, +) = I_6$
 - No possible moves from I₈ and I₉

Reducible or Nonreducible

LR(0) parser

- Shift item: A \rightarrow α•aβ, a∈V_T
- Reducible item: A $\rightarrow \alpha$ •,
- Accepted item: $Z \rightarrow S_{\bullet}$, ($Z \rightarrow S$ is from the augmented grammar)
- Shift status: include shift item
- Reducible state: include reducible item
- Conflict state:
 - A state contains different reducible items: reduce-reduce conflict;
 - A state contains both shift states and reducible items: shift-reduce conflict

LR(0) algorithm

Figure 4.35: Model of an LR parser

Building the Action Table

- If state I_i has item $A \rightarrow \alpha \bullet a \beta$, and
 - Goto(I_i , a) = I_j
 - Next symbol in the input is a
- Then Action[I_i, a] = I_i
 - Meaning: Shift "a" to the stack and move to state I_i
 - Need to wait for the handle to appear or to complete
- If State I_i has item A → α •
- Then Action[S, b] = reduce using A $\rightarrow \alpha$
 - For all b in Follow(A)
 - Meaning: The entire handle α is in the stack, need to reduce
 - Need to wait to see Follow(A) to know that the handle is ready
 - E.g. $S \rightarrow E \bullet E \rightarrow E \bullet + T$
 - Current input can be either Follow(S) or +

Building the Action Table

- If state has S' → S₀ •
- Then Action[S, \$] = accept
- Current state
 - The action to be taken depends on the current state
 - In LL, it depends on the current non-terminal on the top of the stack
 - In LR, non-terminal is not known till reduction is done
 - Who is keeping track of current state?
 - The stack
 - Need to push the state also into the stack
 - The stack includes the viable prefix and the corresponding state for each symbol in the viable prefix

Building the Action Table

Action Table

```
\begin{split} & \text{action}(S_i, a) = S_j, \text{ if there is an edge from } S_i \text{ to } S_j \text{ labeled as a} \\ & \text{action}(S_i, c) = R_p, \text{ if } S_i \text{ is a reducible state, } c \in Vt \cup \{\#\} \\ & \text{action}(S_i, \#) = \text{accept, if } S_i \text{ is acceptance state} \\ & \text{action}(S_i, a) = \text{error, otherwise} \end{split}
```

Terminal symbols States	a_1	•••	#
S_1			
S_n			

Building the Goto Table

- If $Goto(I_i, A) = I_i$
- Then Goto[i, A] = j
- Meaning
 - When a reduction $X \rightarrow \alpha$ taken place
 - The non-terminal X is added to the stack replacing α
 - What should the state be after adding X
 - This information is kept in Goto table

Building the Goto Table

GOTO Table

goto $(S_i, A) = S_j$, if there is an edge from S_i to S_j labeled as A goto $(S_i, A) =$ error, if there is no edge from S_i to S_j labeled as A

non-terminal State	A_1	 #
S_1		
S _n		

Example

	action					goto		
	a	b	c	#		S	A	В
0	S2					1		
1				accept				
2		S7					3	5
3		S7	S4					8
4	R1	R1	R1	R1				
5	S6							
6	R3	R3	R3	R3				
7	R4	R4	R4	R4				
8		S9						
9	R2	R2	R2	R2				

Algorithm 4.44: LR-parsing algorithm.

INPUT: An input string w and an LR-parsing table with functions ACTION and GOTO for a grammar G.

OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w; otherwise, an error indication.

METHOD: Initially, the parser has s_0 on its stack, where s_0 is the initial state, and w\$ in the input buffer. The parser then executes the program in Fig. 4.36.

```
let a be the first symbol of w\$; while(1) { /* repeat forever */
let s be the state on top of the stack;
if ( ACTION[s, a] = shift t ) {
    push t onto the stack;
let a be the next input symbol;
} else if ( ACTION[s, a] = reduce A \rightarrow \beta ) {
    pop |\beta| symbols off the stack;
let state t now be on top of the stack;
    push GOTO[t, t] onto the stack;
    output the production t and t is a comparison of the stack;
    else if ( ACTION[t, t] and t] break; /* parsing is done */
else call error-recovery routine;
}
```

a b a c

P: (0) Z \rightarrow S; (1) S \rightarrow aAc; (2)A \rightarrow ABb; (3)A \rightarrow Ba; (4)B \rightarrow b

	action					goto		
	a	b	c	#	S	A	В	
0	S2				1			
1				accept				
2		S7				3	5	
3		S7	S4				8	
4	R1	R1	R1	R1		3/16		
5	S6		MICH SE					
6	R3	R3	R3	R3				
7	R4	R4	R4	R4				
8		S9						
9	R2	R2	R2	R2				

Stack	Input	Actions
0	abac#	S2
02	bac#	S7
027	ac#	R4,Goto(2, B)=5
025	ac#	S6
0256	c#	R3,Goto(2, A)=3
023	c#	S4
0234	#	R1, Goto(0, S)=1
01	#	Accept

Homework

Page 257, 4.6.1

Limit of LR(0)

2018/11/4

LR Conflicts

A shift/reduce conflict is an error where a shift/reduce parser cannot tell whether to shift a token or perform a reduction.

A reduce/reduce conflict is an error where a shift/reduce parser cannot tell which of many reductions to perform.

A grammar whose handle-finding automaton contains a shift/reduce conflict or a reduce/reduce conflict is not LR(0).

LR Family

LR Family

- covers wide range of grammars.
- SLR simple LR parser
- LR most general LR parser
- LALR intermediate LR parser (look-head LR parser)
- SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are different.

