Lecture 8：Bottom－up Analysis

Xiaoyuan Xie 谢晓园

xxie＠whu．edu．cn

School of Computer Science E301

In A Nutshell

What is Bottom-Up Parsing?

- Idea: Apply productions in reverse to convert the user's program to the start symbol.
- We can think of bottom-up parsing as the process of "reducing" a string w to the start symbol of the grammar. At each reduction step, a specific substring matching the body of a production is replaced by the nonterminal at the head of that production.
- Keywords
- Reductions, handle, shift-reduce parsing, conflicts, LR grammars

What is Bottom-Up Parsing?

- Four major directional, predictive bottom-up parsing techniques:
- Directional: Scan the input from left-to-right.
- Predictive: Guess which production should be inverted.
- The largest class of grammars for which shiftreduce parsers can be built, the LR grammars: LR(0), SLR(0), LR(1), LALR(1)

A View of a Bottom-Up Parse

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \text { int + (int + int + int) } \\
& \Rightarrow T+(i n t+i n t+i n t) \\
& \Rightarrow E+(i n t+i n t+i n t) \\
& \Rightarrow E+(T+i n t+i n t) \\
& \Rightarrow E+(E+i n t+i n t) \\
& \Rightarrow E+(E+T+i n t) \\
& \Rightarrow E+(E+i n t) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

A left-to-right, bottom-up parse is a rightmost derivation traced in reverse.

A View of a Bottom-Up Parse

$$
\begin{aligned}
& \text { int + (int +int +int) } \\
& \Rightarrow T+(\text { int }+i n t+i n t) \\
& \Rightarrow E+(\text { int }+i n t+i n t) \\
& \Rightarrow E+(T+i n t+i n t) \\
& \Rightarrow E+(E+i n t+i n t) \\
& \Rightarrow E+(E+T+i n t) \\
& \Rightarrow E+(E+i n t) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

Each step in this bottom-up parse is called a reduction. We reduce a substring of the sentential form back to a nonterminal (start symbol).

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of a } \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \text { int }+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & T+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & E+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & E+(T+i n t+i n t) \\
\Rightarrow & E+(E+i n t+i n t) \\
\Rightarrow & E+(E+T+\text { int }) \\
\Rightarrow & E+(E+i n t) \\
\Rightarrow & E+(E+T) \\
\Rightarrow & E+(E) \\
\Rightarrow & E+T \\
\Rightarrow & E
\end{aligned}
$$

$$
E \rightarrow E+T A \text { View of a Bottom-Up Parse }
$$

int + (int + int + int $)$

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of a } \\
T & \rightarrow \text { int } \\
& T \rightarrow(E) \\
& i n t+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & T+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & E+(\text { int }+ \text { int }+ \text { int) } \\
\Rightarrow & E+(T+i n t+i n t) \\
\Rightarrow & E+(E+i n t+i n t) \\
\Rightarrow & E+(E+T+i n t) \\
\Rightarrow & E+(E+i n t) \\
\Rightarrow & E+(E+T) \\
\Rightarrow & E+(E) \\
\Rightarrow & E+T \\
\Rightarrow & E
\end{aligned}
$$

$$
E \rightarrow E+T A \text { View of a Bottom-Up Parse }
$$

int + (int + int + int $)$

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of a } \\
T & \rightarrow \text { int } \\
& T \rightarrow(E) \\
& i n t+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & T+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & E+(\text { int }+ \text { int }+ \text { int }) \\
\Rightarrow & E+(T+i n t+i n t) \\
\Rightarrow & E+(E+i n t+i n t) \\
\Rightarrow & E+(E+T+\text { int }) \\
\Rightarrow & E+(E+i n t) \\
\Rightarrow & E+(E+T) \\
\Rightarrow & E+(E) \\
\Rightarrow & E+T \\
\Rightarrow & E
\end{aligned}
$$

$$
E \rightarrow E+T A \text { View of a Bottom-Up Parse }
$$

int + (int + int + int $)$

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of a } \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \Rightarrow T+(\text { int }+ \text { int }+ \text { int }) \\
& \Rightarrow E+(\text { int }+ \text { int }+ \text { int }) \\
& \Rightarrow E+(T+i n t+i n t) \\
& \Rightarrow E+(E+i n t+i n t) \\
& \Rightarrow E+(E+T+i n t) \\
& \Rightarrow E+(E+i n t) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

$$
E \rightarrow E+T A \text { View of a Bottom-Up Parse }
$$

$E \rightarrow T$
$E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$\Rightarrow E+(i n t+i n t+i n t)$
$\Rightarrow E+(T+i n t+i n t)$
$\Rightarrow E+(E+i n t+i n t)$
$\Rightarrow E+(E+T+i n t)$
$\Rightarrow E+(E+$ int $)$
$\Rightarrow E+(E+T)$
$\Rightarrow E+(E)$
$\Rightarrow \mathbf{E}+\mathbf{T}$
$\Rightarrow \mathrm{E}$

int + (int + int + int $)$
$E \rightarrow T$
E \rightarrow E + TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$\Rightarrow E+(i n t+i n t+i n t)$
$\Rightarrow E+(T+i n t+i n t)$
$\Rightarrow E+(E+i n t+i n t)$
$\Rightarrow E+(E+T+i n t)$
$\Rightarrow E+(E+$ int $)$
$\Rightarrow E+(E+T)$
$\Rightarrow E+(E)$
$\Rightarrow \mathbf{E}+\mathbf{T}$
$\Rightarrow \mathrm{E}$

| int + int | int |
| :--- | :--- | :--- | :--- | :--- | :--- |

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of } \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \Rightarrow E+(T+\text { int }+ \text { int }) \\
& \Rightarrow E+(E+\text { int }+ \text { int }) \\
& \Rightarrow E+(E+T+\text { int }) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

$$
E \rightarrow E+\text { TA View of a Bottom-Up Parse }
$$

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+T A \text { View of } \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \Rightarrow E+(T+\text { int }+ \text { int }) \\
& \Rightarrow E+(E+\text { int }+ \text { int }) \\
& \Rightarrow E+(E+T+\text { int }) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

$$
E \rightarrow E+\text { TA View of a Bottom-Up Parse }
$$

$E \rightarrow T$
 $E \rightarrow E+T A$ View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E+\text { int }+ \text { int }) \\
& \Rightarrow E+(E+T+\text { int }) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+T A$ View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E+\text { int +int } \\
& \Rightarrow E+(E+T+\text { int }) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $\mid)$

$$
\begin{aligned}
& E \rightarrow T \\
& E \rightarrow E+\text { TA View of a Bottom-Up Parse } \\
& T \rightarrow \text { int } \\
& T \rightarrow(E) \\
& \Rightarrow E+(E+T+i n t) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow \mathrm{E}+(\mathrm{E}+\mathrm{T}) \\
& \Rightarrow E+(E) \\
& \Rightarrow \mathbf{E}+\mathbf{T} \\
& \Rightarrow \text { E }
\end{aligned}
$$

$E \rightarrow T$
$E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int
$T \rightarrow(E)$

$$
\begin{aligned}
& \Rightarrow E+(E+T+\text { int }) \\
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $)$
$E \rightarrow T$
$E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int
$T \rightarrow(E)$

$$
\begin{aligned}
& \Rightarrow E+(E+\text { int }) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $)$
$E \rightarrow T$
$E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int
$T \rightarrow(E)$

$$
\begin{aligned}
& \Rightarrow E+(E+i n t) \\
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E+T) \\
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int $\mid+$ int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+(E) \\
& \Rightarrow E+T \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int $\mid+$ int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow \mathbf{E}+\mathbf{T} \\
& \Rightarrow \mathbf{E}
\end{aligned}
$$

int + (int + int + int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse $T \rightarrow$ int

$$
T \rightarrow(E)
$$

$$
\begin{aligned}
& \Rightarrow E+\mathbf{T} \\
& \Rightarrow E
\end{aligned}
$$

int + (int + int + int $\mid)$

$E \rightarrow T$
 $E \rightarrow E+$ TA View of a Bottom-Up Parse
 $$
T \rightarrow \text { int }
$$
 $$
T \rightarrow(E)
$$

$\Rightarrow \mathrm{E}$
int + (int + int + int $\mid)$

Preliminaries

Basic Concepts

- How to build a predictive bottom-up parser?
- Sentential form
- For a grammar G with start symbol S

A string α is a sentential form of G if $S \Rightarrow^{*} \alpha$

- a may contain terminals and nonterminals
- If α is in T^{*}, then α is a sentence of $L(G)$
- Left sentential form: A sentential form that occurs in the leftmost derivation of some sentence
- Right sentential form: A sentential form that occurs in the rightmost derivation of some sentence

Basic Concepts

- Example of the sentential form
$-E \rightarrow E * E|E+E|(E) \mid$ id
- Leftmost derivation:

$$
\begin{gathered}
E \Rightarrow E+E \Rightarrow E * E+E \Rightarrow i d^{*} E+E \Rightarrow i d * i d+E \Rightarrow \\
i d^{*} \text { id }+E * E \Rightarrow i d{ }^{*} \text { id }+i d^{*} E \Rightarrow i d * i d+i d * i d
\end{gathered}
$$

- All the derived strings are of the left sentential form
- Rightmost derivation

$$
\begin{gathered}
E \Rightarrow E+E \Rightarrow E+E^{*} E \Rightarrow E+E^{*} \text { id } \Rightarrow E+i \text { id }^{*} \text { id } \Rightarrow \\
E * \text { E }^{*} \text { id } \Rightarrow E^{*} \text { id }+i d^{*} \text { id } \Rightarrow i d * i d+i d{ }^{*} \text { id }
\end{gathered}
$$

- All the derived strings are of the right sentential form

A Small example

A Rightmost Derivation:

$$
\begin{aligned}
& E \rightarrow E+T \mid T \\
& T \rightarrow T^{*} F \mid F \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

$$
\begin{aligned}
& E \rightarrow E+T \\
& \rightarrow E+T^{*} F \\
& \rightarrow E+T^{*} * \\
& \rightarrow E+E^{*} i d \\
& \rightarrow E+i d * i d \\
& \rightarrow I+i d^{*} \text { id } \\
& \rightarrow E+i d * i d \\
& \rightarrow i d+i d * i d
\end{aligned}
$$

The Parsing Problem

- Given a right sentential form, α, determine what substring of α is the right-hand side (RHS) of the rule in the grammar that must be reduced to produce the previous sentential form in the right derivation
- The correct RHS is called the handle

Basic Concepts

- Informally, a handle of a string is a substring that matches the right side of a production rule.
- But not every substring matches the right side of a production rule is handle
- Reduction of a handle represents one step along the reverse of a rightmost derivation

Basic Concepts

- A handle of a right sentential form $\gamma(\equiv \alpha \beta \omega)$ is a production rule $\mathrm{A} \rightarrow \beta$ and a position of γ where the string β may be found and replaced by A to produce the previous right-sentential form in a rightmost derivation of γ.
$S \stackrel{r m}{\Rightarrow}{ }^{*} \alpha A \omega \stackrel{r m}{\Rightarrow} * \alpha \beta \omega$
- Alternatively, a handle of a right-sentential form γ is a production $A \rightarrow \beta$ and a position of γ where the string β may be found, such that replacing β at that position by A produces the previous right-sentential form in a rightmost derivation of γ.

Basic Concepts

- Handle
- Given a rightmost derivation

$$
S \Rightarrow \gamma_{1} \Rightarrow \gamma_{2} \Rightarrow \ldots \Rightarrow \gamma_{k} \Rightarrow \gamma_{\mathrm{k}+1} \Rightarrow \ldots \Rightarrow \gamma_{\mathrm{n}}
$$

- γ_{i}, for all i, are the right sentential forms
- $\gamma_{k}=\alpha A w ; \gamma_{k+1}=\alpha \beta w$
- From γ_{k} to γ_{k+1}, production $A \rightarrow \beta$ is used
- For convenience, we refer to the body β rather than $A \rightarrow \beta$ as a handle.

Basic Concepts

-Def: β is the handle of the right sentential form

$$
\gamma=\alpha \beta w \text { if and only if } S=>^{*} r m \alpha A w=>r m \alpha \beta w
$$

$$
\begin{array}{rlrl}
E & \rightarrow E+T & & \text { Let } \gamma=\alpha \beta w \text { be } \\
& \rightarrow E+T^{*} F & & E+F^{*} \text { id } \\
& \rightarrow E+T^{*} \text { id } & & \text { What is } \beta ? \\
& \rightarrow E+E^{*} \text { id } & & \text { What is } w ? \\
& & \text { What is } \alpha ? \text { What is } A ?
\end{array}
$$

Basic Concepts

- Def: β is a phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2}=>+\alpha_{1} \beta \alpha_{2}$

$$
\begin{array}{cc}
\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} & \text { Let } \gamma=\alpha_{1} A \alpha_{2} \text { be } \\
\rightarrow \mathrm{E}+\mathrm{T} * \mathrm{~F} & \underline{\mathrm{E}+\mathrm{T}}
\end{array}
$$

$\rightarrow \mathrm{E}+\mathrm{T}$ * id LetA be T. What is α_{1} ? α_{2} ?
What can β be?

Basic Concepts

- Def: β is a simple phrase of the right sentential form γ if and only if $S=>^{*} \gamma=\alpha_{1} A \alpha_{2}=>\alpha_{1} \beta \alpha_{2}$

$$
\begin{array}{rlrl}
\mathrm{E} & \rightarrow \mathrm{E}+\mathrm{T} & \text { Let } \gamma=\alpha_{1} \mathrm{~A} \alpha_{2} \text { be } \\
& \rightarrow \mathrm{E}+\mathrm{T} * \mathrm{~F} & & \mathrm{E}+\mathrm{T} \\
& \rightarrow \mathrm{E}+\mathrm{T} * \text { id } & \text { Let } \mathrm{A} \text { be } \mathrm{T} . & \text { What is } \alpha_{1} ? \alpha_{2} ?
\end{array}
$$

What can β be?

- The handle of any rightmost sentential form is its leftmost simple phrase

Handles

- The handle of a parse tree T is the leftmost complete cluster of leaf nodes.
- A left-to-right, bottom-up parser works by iteratively searching for a handle, then reducing the handle.

Basic Concepts

RIGHT SENTENTIAL FORM	HANDLE	REDUCING PRODUCTION
$\mathbf{i d}_{1} * \mathbf{i d}_{2}$	$\mathbf{i d}_{1}$	$F \rightarrow \mathbf{i d}$
$F * \mathbf{i d}_{2}$	F	$T \rightarrow F$
$T * \mathbf{i d}_{2}$	$\mathbf{i d}_{2}$	$F \rightarrow \mathbf{i d}$
$T * F$	$T * F$	$E \rightarrow T * F$

Figure 4.26: Handles during a parse of $\mathrm{id}_{1} * \mathrm{id}_{2}$

Basic Concepts

- Example

$$
\begin{aligned}
& \text { P: } \\
& \text { (1) } E \rightarrow T \\
& \text { (2) } E \rightarrow E+T \\
& \text { (3) } T \rightarrow F \\
& \text { (4) } T \rightarrow T * F \\
& \text { (5) } F \rightarrow \text { (E) } \\
& \text { (6) } F \rightarrow i \\
& \text { (7) } F \rightarrow \mathbf{n}
\end{aligned}
$$

Sentential Form: $\quad \mathbf{T}+(\mathbf{E}+\mathbf{T}) * \mathbf{i}$

A derivation of this sentential form (not a rightmost derivation)
$\mathbf{E} \Rightarrow \mathbf{E}+\mathbf{T} \Rightarrow \mathbf{E}+\mathbf{T} * \mathbf{F} \Rightarrow \mathbf{E}+\mathbf{T} * i \Rightarrow$
$\mathbf{E}+\mathbf{F} * \mathbf{i} \Rightarrow \mathbf{E}+(\mathbb{E}) * \mathbf{i} \Rightarrow \mathbf{E}+(\mathbf{E}+\mathrm{T}) * \mathbf{i}$
$\Rightarrow \mathbf{T}+(\mathbf{E}+\mathbf{T}) * \mathbf{i}$
Phrases: $\mathbf{T}+(\mathbf{E}+\mathbf{T}) * \mathbf{i}, \mathbf{T}, \mathbf{E}+\mathbf{T}, \mathbf{i},(\mathbf{E}+\mathbf{T}),(\mathbf{E}+\mathbf{T}) * \mathbf{i}$
Simple phrases: T, E+T, i
Handle: T

Given a sentential form, build a parsing tree, then it will be easy to identify a handle

Basic Concepts

- Illustration via Parse Tree

$$
\begin{aligned}
& \text { Sentential form: leave nodes (from left to right) } \\
& \qquad T+(E+T) * i
\end{aligned}
$$

> Phrases: leave nodes of each subtree $T+(E+T) * i, ~ T, ~(E+T) * i, ~(E+T), ~ E+T, ~ i$

Simple phrase: leave nodes of all simple subtree (i.e. a subtree with only one level of leaves) T, E+T, i

Handle: leave nodes of the leftmost simple subtree T

Handle Pruning

- A right-most derivation in reverse can be obtained by handlepruning.
- $\boldsymbol{S}=\gamma_{0} \stackrel{\mathrm{rm}}{\Rightarrow} \gamma_{1} \stackrel{\mathrm{rm}}{\Rightarrow} \gamma_{2} \stackrel{\mathrm{rm}}{\Rightarrow} \ldots \stackrel{\mathrm{rm}}{\Rightarrow} \gamma_{\mathrm{n}-1} \stackrel{r m}{\Rightarrow} \gamma_{\mathrm{n}}=\omega \times \quad$ input string
- Start from γ_{n}, find a handle $A_{n} \rightarrow \beta_{n}$ in γ_{n}, and replace β_{n} in by A_{n} to get γ_{n-1}.
- Then find a handle $A_{n-1} \rightarrow \beta_{n-1}$ in γ_{n-1}, and replace β_{n-1} in by A_{n-1} to get $\gamma_{\mathrm{n}-2}$.
- Repeat this, until reach the start nonterminal S.

Homework

Page 240, 4.5.1
Page 241, 4.5.3(a)

LR Parsing

The Parsing Problem

- Produce a parse tree starting at the leaves
- The order will be that of a rightmost derivation
- The most common bottom-up parsing algorithms are in the LR family
L - Read the input left to right
R - Trace out a rightmost parse tree

Meaning of LR

- L: Process input from left to right
- R: Use rightmost derivation, but in reversed order
- $E \Rightarrow E+E \Rightarrow E+E$ * $E \Rightarrow E+E^{*}$ id $\Rightarrow E+i d$ *id $\Rightarrow E$ * $E+i d$ * id $\Rightarrow E^{*}$ id $+i d$ * id $\Rightarrow i d$ *id +id * id

LR Parsers Use Shift-Reduce

- Shift-Reduce Algorithms
- Reduce: replace the handle on the top of the parse stack with its corresponding LHS
- Shift: move the next token to the top of the parse stack

LR Parsers Use Shift-Reduce

STACK	InPUT	ACTION
$\$$	$\mathbf{i d}_{1} * \mathbf{i d}_{2} \$$	shift
$\$ \mathbf{i d}_{1}$	$* \mathbf{i d}_{2} \$$	reduce by $F \rightarrow \mathbf{i d}$
$\$ F$	$* \mathbf{i d}_{2} \$$	reduce by $T \rightarrow F$
$\$ T$	$* \mathbf{i d}_{2} \$$	shift
$\$ T *$	$\mathbf{i d}_{2} \$$	shift
$\$ T * \mathbf{i d}_{2}$	$\$$	reduce by $F \rightarrow \mathbf{i d}$
$\$ T * F$	$\$$	reduce by $T \rightarrow T * F$
$\$ T$	$\$$	reduce by $E \rightarrow T$
$\$ E$	$\$$	accept

Figure 4.28: Configurations of a shift-reduce parser on input $\mathbf{i d}_{1} \boldsymbol{i d}_{2}$

Shift/Reduce/Accept/Error

A Shift-Reduce Parser

- $E \rightarrow E+T \mid T$
- $\mathbf{T} \rightarrow \mathbf{T}^{*} \mathbf{F} \mid F$
- $F \rightarrow(E) \mid$ id

Right-Most Derivation of id+id*id
$E \Rightarrow E+T \Rightarrow E+T^{*} F \Rightarrow E+T^{*} i d \Rightarrow E+F^{*}$ id
$\Rightarrow \mathrm{E}+i d^{*} \mathrm{id} \Rightarrow \mathrm{T}+\mathrm{id}{ }^{*} i d \Rightarrow \mathrm{~F}+\mathrm{id}{ }^{*} i d \Rightarrow \mathrm{id}+\mathrm{id}{ }^{*} \mathrm{id}$

Right-Most Sentential Form	Reducing Production
$\underline{\text { id }}+\mathrm{id}$ *id	F \rightarrow id
$\underline{\text { F }}+\mathrm{id} * \mathrm{id}$	$\mathbf{T} \rightarrow \mathbf{F}$
T+id*id	$\mathbf{E} \rightarrow \mathbf{T}$
Etid*id	F \rightarrow id
E +1 \%id	$\mathbf{T} \rightarrow \mathbf{F}$
EHT*id	F \rightarrow id
$\mathbf{E}+\mathrm{m} \times$	$\mathbf{T} \rightarrow \mathbf{T} * \mathbf{F}$
$\underline{E+T}$	$\mathbf{E} \rightarrow \mathbf{E}+\mathbf{T}$

Handles are red and underlined in the right-sentential forms.

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

| int | + | int | int |
| :--- | :--- | :--- | :--- | :--- |

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow \text { (E) }
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow(E)
\end{aligned}
$$

A Detail about Handles

$$
\begin{aligned}
& E \rightarrow F \\
& E \rightarrow E+F \\
& F \rightarrow F * T \\
& F \rightarrow T \\
& T \rightarrow \text { int } \\
& T \rightarrow \text { (E) }
\end{aligned}
$$

Bottom-up Parsing

- Traverse rightmost derivation backwards
- If reduction is done arbitrarily
- It may not reduce to the starting symbol
- Need backtracking
- If we follow the path of rightmost derivation
- All the reductions are guaranteed to be "correct"
- Guaranteed to lead to the starting symbol without backtracking
- That is: If it is always possible to correctly find the handle

Key: Finding Handles

-Where do we look for handles?

- Where in the string might the handle be?
- How do we search for possible handles?
- Once we know where to search, how do we identify candidate handles?
- How do we recognize handles?
- Once we've found a candidate handle, how do we check that it really is the handle?
- Use a stack to keep track of the viable prefix
- The prefix of the handle will always be at the top of the stack

Viable prefix

- If a prefix of a right-sentential form:
$-Z \Rightarrow A B b$: Consider prefixes $A B, A B b$
$-Z \Rightarrow^{+} A c b$: Consider prefixes $A, A c, A c b$

Viable prefix

- Viable prefixes are:
- Prefixes that do not contain simple phrases; or
- Prefixes containing one simple phrase that are at the end of this prefix --that is, this simple phrase is the handle.
- A viable prefix does not contain any symbol after a handle.

Viable prefix

- Eg.

```
(1) Z}->\textrm{ABb
(2) A }->\textrm{a
(3) A}->\textrm{b
(4) B}->
(5) B}->\textrm{C
(6) B }->\textrm{bB
(2) \(\mathrm{A} \rightarrow \mathrm{a}\)
```

$$
\mathrm{Z} \Rightarrow \mathrm{ABb}
$$

Consider prefixes: $\mathrm{AB}, \mathrm{ABb}$
Viable prefixes are: $A B$ (no simple phrase)
ABb (one simple phrase, which is at the end of the prefix)

$$
Z \Rightarrow+a b c b
$$

Consider prefixes: $\mathrm{a}, \mathrm{ab}, \mathrm{abc}, \mathrm{abcb}$
Viable prefix: a (contain one simple phrase)
$a b, a b c, a b c d$ are not viable prefix

Viable prefix

- Two types of viable prefix
- Nonreducible (for shift operation): no simple phrase, need to shift more symbols to form the first leftmost simple phrase (i.e. handle)
- Reducible (for reduction operation): contain one simple phrase, at the end of the

```
(1) Z}->\textrm{ABb
(2) \(\mathrm{A} \rightarrow \mathrm{a}\)
(3) \(\mathrm{A} \rightarrow \mathrm{b}\)
(4) \(B \rightarrow d\)
(5) \(B \rightarrow C\)
(6) \(B \rightarrow b B\)
```

$\mathrm{Z} \Rightarrow \mathrm{ABb}$ Viable prefixes:
ABb (contain a simple phrase) --- reducible

Bottom-up Parsing

- Shift-reduce operations in bottom-up parsing
- Shift the input into the stack
- Wait for the current handle to complete or to appear
- Or wait for a handle that may complete later
- Reduce
- Once the handle is completely in the stack, then reduce
- The operations are determined by the parsing table

Build the Automata

- LR(0) Item of a grammar G
- Is a production of G with a distinguished position
- Position is used to indicate how much of the handle has already been seen (in the stack)
- For production $S \rightarrow$ a B S, items for it include $S \rightarrow \bullet$ a S $S \rightarrow a \cdot B S$ $S \rightarrow a B \bullet S$ $S \rightarrow$ a B S
- Left of • are the parts of the handle that has already been seen
- When • reaches the end of the handle \Rightarrow reduction
- For production $S \rightarrow \varepsilon$, the single item is

$$
S \rightarrow \bullet
$$

Building the Automata

- Closure function Closure(I)
- I is a set of items for a grammar G
- Every item in I is in Closure(I),
if $A \rightarrow \alpha \bullet B \beta$ is in Closure (I) and $B \rightarrow \gamma$ is a production in G, then add $B \rightarrow \bullet \gamma$ to Closure(I)
- If it is not already there
- Meaning
- When α is in the stack and B is expected next
- One of the B-production rules may be used to reduce the input to B » May not be one-step reduction though
- Apply the rule until no more new items can be added

Building the Automata

- CLOSURE(IS)Example

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{T}}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}\} \\
& \mathrm{V}_{\mathrm{N}}=\{\mathrm{S}, \mathrm{~A}, \mathrm{~B}\} \\
& \mathrm{S}=\mathrm{S} \\
& \mathrm{P}: \\
& \{\mathrm{S} \rightarrow \mathrm{aAc} \\
& \mathrm{A} \rightarrow \mathrm{ABb} \\
& \mathrm{~A} \rightarrow \mathrm{Ba} \\
& \mathrm{~B} \rightarrow \mathrm{~b}
\end{aligned}
$$

$$
\begin{aligned}
& \text { IS }=\{S \rightarrow \bullet a A c\} \\
& \text { CLOSURE }(I S)=\{S \rightarrow \bullet a A c\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { IS }=\{S \rightarrow \mathrm{a} \bullet \mathrm{Ac}\} \\
& \mathrm{CLOSURE}(\mathrm{IS}) \\
& =\{\mathrm{S} \rightarrow \mathrm{a} \bullet \mathrm{Ac}, \\
& \mathrm{A} \rightarrow \bullet \mathrm{ABb}, \mathrm{~A} \rightarrow \bullet \mathrm{Ba}, \\
& \mathrm{~B} \rightarrow \bullet \mathrm{~b}\}
\end{aligned}
$$

Building the Automata

- Goto function Goto($(, X)$
-X is a grammar symbol
- If $A \rightarrow \alpha \bullet X \beta$ is in I then $A \rightarrow \alpha$ X β is in Goto(I, X)
- Let J denote the set constructed by this step
- All items in Closure(J) are in Goto(I, X)
- Meaning
- If I is the set of valid items for some viable prefix γ
- Then goto (I, X) is the set of valid items for the viable prefix γX

Building the Automata

- Augmented grammar
- G is the grammar and S is the staring symbol
- Construct G^{\prime} by adding production $S^{\prime} \rightarrow$ S into G
- S^{\prime} is the new starting symbol
- E.g.: G: $S \rightarrow \alpha\left|\beta \Rightarrow G^{\prime}: S^{\prime} \rightarrow S, S \rightarrow \alpha\right| \beta$
- Meaning
- The starting symbol may have several production rules and may be used in other non-terminal's production rules
- Add S' \rightarrow S to force the starting symbol to have a single production
- When $S^{\prime} \rightarrow S$ • is seen, it is clear that parsing is done

Building the Automata

- Complete process: Given a grammar G
- Step 1: augment G
- Step 2: initial state
- Construct the valid item set "l" of State 0 (the initial state)
- Add S' \rightarrow • S into I
- All expansions have to start from here
- Compute Closure(I) as the complete valid item set of state 0
- All possible expansions S can lead into
- Step 3:
- From state I, for all grammar symbol X

Construct J = Goto(I, X)
Compute Closure(J)

- Create the new state with the corresponding Goto transition
- Only if the valid item set is non-empty and does not exist yet
- Repeat Step 3 till no new states can be derived

Building the Automata -- Example

- Grammar G:

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow i d \mid(E)
\end{aligned}
$$

- Step 1: Augment G
$S^{\prime} \rightarrow S \quad S \rightarrow E \quad E \rightarrow E+T|T \quad T \rightarrow i d|(E)$
- Step 2:
- Construct Closure $\left(l_{0}\right)$ for State 0
- First add into $\mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S}$
- Compute Closure(I_{0})

$$
\begin{aligned}
& S^{\prime} \rightarrow \bullet S \\
& S \rightarrow \bullet E \\
& E \rightarrow \bullet E+T \\
& E \rightarrow \bullet T \\
& T \rightarrow \bullet \text { id } \\
& T \rightarrow \bullet(E)
\end{aligned}
$$

Building the Automata -- Example

- Step 3
$-I_{1}$
I_{0} :

$$
\mathrm{T} \rightarrow \bullet \text { id } \quad \mathrm{T} \rightarrow \bullet(\mathrm{E})
$$

- Add into I_{1} : Goto($\left.\mathrm{I}_{0}, \mathrm{~S}\right)=\mathrm{S}^{\prime} \rightarrow \mathrm{S}$ -
- No new items to be added to Closure $\left(I_{1}\right)$
$-I_{2}$
- Add into $\mathrm{I}_{2}:$ Goto $\left(\mathrm{I}_{0}, \mathrm{E}\right)=\mathrm{S} \rightarrow \mathrm{E} \bullet \quad \mathrm{E} \rightarrow \mathrm{E} \bullet+\mathrm{T}$
- No new items to be added to Closure $\left(I_{2}\right)$
$-I_{3}$
- Add into I_{3} : Goto($\left.\mathrm{I}_{0}, \mathrm{~T}\right)=\mathrm{E} \rightarrow \mathrm{T}$ -
- No new items to be added to Closure $\left(I_{3}\right)$
$-I_{4}$
- Add into I_{4} : Goto(I_{0}, id $)=\mathrm{T} \rightarrow \mathrm{id}$ •
- No new items to be added to Closure $\left(I_{4}\right)$

Building the Automata -- Example

- Step 3
$-I_{5}$
- Add into I_{5} : Goto(I_{0}, "(") $=\mathrm{T} \rightarrow(\bullet \mathrm{E})$

$$
\begin{aligned}
& \mathrm{I}_{0}: \\
& \mathrm{S}^{\prime} \rightarrow \bullet \mathrm{S} \quad \mathrm{~S} \rightarrow \bullet \mathrm{E} \\
& \mathrm{E} \rightarrow \bullet \mathrm{E}+\mathrm{T} \quad \mathrm{E} \rightarrow \bullet \mathrm{~T} \\
& \mathrm{~T} \rightarrow \bullet \text { id } \mathrm{T} \rightarrow \bullet(\mathrm{E})
\end{aligned}
$$

- Closure(I_{5})

$$
E \rightarrow \bullet E+T \quad E \rightarrow \bullet T
$$

$$
\mathrm{T} \rightarrow \bullet \text { id } \quad \mathrm{T} \rightarrow \bullet(E)
$$

- No more moves from I_{0}
- No possible moves from I_{1}
$-I_{6}$
- Add into $\mathrm{I}_{6}:$ Goto $\left(\mathrm{I}_{2},+\right)=\mathrm{E} \rightarrow \mathrm{E}+\bullet \mathrm{T}$
- Closure $\left(\mathrm{I}_{5}\right)$

$$
\mathrm{T} \rightarrow \bullet \text { id } \quad \mathrm{T} \rightarrow \bullet(E)
$$

- No possible moves from I_{3} and I_{4}

Building the Automata -- Example

- Step 3
$-I_{7}$
- Add into $\mathrm{I}_{7}: \operatorname{Goto}\left(\mathrm{I}_{5}, \mathrm{E}\right)=$

$$
T \rightarrow(E \bullet) \quad E \rightarrow E \bullet+T
$$

- No new items to be added to Closure (I_{7})
$-\operatorname{Goto}\left(I_{5}, T\right)=I_{3}$
- $\operatorname{Goto}\left(I_{5}\right.$, id $)=I_{4}$
- Goto(I_{5}, "(") $=I_{5}$
- No more moves from I_{5}
$-I_{8}$
- Add into $\mathrm{I}_{8}: \operatorname{Goto}\left(\mathrm{I}_{6}, \mathrm{~T}\right)=\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}$ -
- No new items to be added to Closure $\left(I_{8}\right)$
- $\operatorname{Goto}\left(I_{6}, i d\right)=I_{4}$
- Goto(I_{6}, "(") $=I_{5}$

Building the Automata -- Example

- Step 3
$-I_{9}$
- Add into $\mathrm{I}_{9}:$ Goto($\left.\left.\mathrm{I}_{7}, "\right) "\right)=$

$$
T \rightarrow(E) \bullet
$$

- No new items to be added to Closure $\left(\mathrm{I}_{9}\right)$
$-\operatorname{Goto}\left(I_{7},+\right)=I_{6}$
- No possible moves from I_{8} and I_{9}

Building the Automata -- Example

Reducible or Nonreducible

- LR(0) parser
- Shift item: $A \rightarrow \alpha \cdot a \beta, a \in V_{T}$
- Reducible item: $A \rightarrow \alpha \bullet$,
- Accepted item: $Z \rightarrow S_{\bullet},(Z \rightarrow S$ is from the augmented grammar)
- Shift status: include shift item
- Reducible state: include reducible item
- Conflict state:
- A state contains different reducible items: reduce-reduce conflict;
- A state contains both shift states and reducible items: shift-reduce conflict

Building the Automata - Example 2

Building the Automata - Example 3

Building the Automata - Example 4

Building the Automata - Example 5

$\mathrm{V}_{\mathrm{T}}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathrm{V}_{\mathrm{N}}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$
$\mathrm{S}=\mathrm{S}$
$\mathrm{P}:$
$\{\mathrm{S} \rightarrow \mathrm{aAc}$
$\mathrm{A} \rightarrow \mathrm{ABb}$
$\mathrm{A} \rightarrow \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bB}$
$\mathrm{B} \rightarrow \mathrm{b}$
$\}$

LR(0) algorithm

Figure 4.35: Model of an LR parser

Building the Action Table

- If state I_{i} has item $\mathrm{A} \rightarrow \alpha \bullet a \beta$, and
- $\operatorname{Goto}\left(\mathrm{I}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{I}_{\mathrm{j}}$
- Next symbol in the input is a
- Then Action $[\mathrm{l}, \mathrm{a}]=\mathrm{I}_{\mathrm{j}}$
- Meaning: Shift "a" to the stack and move to state I_{j}
- Need to wait for the handle to appear or to complete
- If State I_{i} has item $A \rightarrow \alpha$ •
- Then Action $[\mathrm{S}, \mathrm{b}]=$ reduce using $\mathrm{A} \rightarrow \alpha$
- For all b in Follow(A)
- Meaning: The entire handle α is in the stack, need to reduce
- Need to wait to see Follow(A) to know that the handle is ready
- E.g. $S \rightarrow E \bullet E \rightarrow E \bullet+T$
- Current input can be either Follow(S) or +

Building the Action Table

- If state has $S^{\prime} \rightarrow S_{0}$ •
- Then Action[S, \$] = accept
- Current state
- The action to be taken depends on the current state
- In LL, it depends on the current non-terminal on the top of the stack
- In LR, non-terminal is not known till reduction is done
- Who is keeping track of current state?
- The stack
- Need to push the state also into the stack
- The stack includes the viable prefix and the corresponding state for each symbol in the viable prefix

Building the Action Table

Action Table
$\operatorname{action}\left(S_{i}, a\right)=S_{j}$, if there is an edge from S_{i} to S_{j} labeled as a $\operatorname{action}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{c}\right)=\mathrm{R}_{\mathrm{p}}$, if S_{i} is a reducible state, $\mathrm{c} \in \mathrm{Vt} \cup\{\#\}$
$\operatorname{action}\left(\mathrm{S}_{\mathrm{i}}, \#\right)=\operatorname{accept}$, if S_{i} is acceptance state
$\operatorname{action}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{a}\right)=$ error, otherwise

States Terminal symbols	a_{1}	\ldots	$\#$
$\mathrm{~S}_{1}$			
\ldots			
$\mathrm{~S}_{\mathrm{n}}$			

Building the Goto Table

- If $\operatorname{Goto}\left(I_{i}, A\right)=I_{j}$
- Then Goto[i, A$]=\mathrm{j}$
- Meaning
- When a reduction $X \rightarrow \alpha$ taken place
- The non-terminal X is added to the stack replacing α
- What should the state be after adding X
- This information is kept in Goto table

Building the Goto Table

GOTO Table

goto $\left(S_{i}, A\right)=S_{j}$, if there is an edge from S_{i} to S_{j} labeled as A goto $\left(S_{i}, A\right)=$ error, if there is no edge from S_{i} to S_{j} labeled as A

State	A_{1}	\ldots	$\#$
$\mathrm{~S}_{1}$			
\ldots			
$\mathrm{~S}_{\mathrm{n}}$			

LR(0) Parsing algorithm

- Example

	$=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
$\mathrm{V}_{\mathrm{N}}=\{\mathrm{S}, \mathrm{A}, \mathrm{B}\}$	
$\mathrm{S}=\mathrm{S}$	
P:	
\{ (1) S \rightarrow aAc	
(2) $\mathrm{A} \rightarrow \mathrm{ABb}$	
(3) $\mathrm{A} \rightarrow \mathrm{Ba}$	
	(4) $\mathrm{B} \rightarrow \mathrm{b}$

LR(0) Parsing algorithm

action			goto					
	a	b	c	\#		S	A	B
0	S2				1			
1		S7		accept				
2		S7	S4			3	5	
3		R1	R1	R1			8	
4	R1							
5	S6	R3	R3	R3				
6	R3	R4	R4	R4				
7	R4	S9						
8		R2	R2	R2				
9	R2							

LR(0) Parsing algorithm

Algorithm 4.44: LR-parsing algorithm.
INPUT: An input string w and an LR-parsing table with functions ACTION and GOTO for a grammar G.
OUTPUT: If w is in $L(G)$, the reduction steps of a bottom-up parse for w; otherwise, an error indication.

METHOD: Initially, the parser has s_{0} on its stack, where s_{0} is the initial state, and $w \$$ in the input buffer. The parser then executes the program in Fig. 4.36.

```
let a be the first symbol of w$;
while(1) { /* repeat forever */
    let s be the state on top of the stack;
    if (ACTION[s,a]= shift t) {
        push t onto the stack;
        let a be the next input symbol;
    } else if ( ACTION[s,a] = reduce A->\beta){
        pop |\beta| symbols off the stack;
        let state t now be on top of the stack;
        push GOTO[t,A] onto the stack;
            output the production A->\beta;
    } else if ( ACTION[s,a] = accept ) break; /* parsing is done */
    else call error-recovery routine;
}
```


LR(0) Parsing algorithm

P: (0) $\mathrm{Z} \rightarrow \mathrm{S} ;(1) \mathrm{S} \rightarrow \mathrm{aAc}$; (2)A $\rightarrow \mathrm{ABb}$; (3) $\mathrm{A} \rightarrow \mathrm{Ba}$; (4)B $\rightarrow \mathrm{b}$

action					goto		
	a	b	c	\#	S	A	B
0	S2				1		
1				accept			
2		S7				3	5
3		S7	S4				8
4	R1	R1	R1	R1			
5	S6						
6	R3	R3	R3	R3			
7	R4	R4	R4	R4			
8		S9					
9	R2	R2	R2	R2			

Stack	Input	Actions
0	abac\#	S2
02	bac\#	S7
027	ac\#	R4,Goto(2, B) $=5$
025	ac\#	S6
0256	c\#	R3,Goto $(2, A)=3$
023	c\#	S4
0234	$\#$	R1, Goto($0, \mathrm{~S})=1$
01	$\#$	Accept

Homework

Page 257, 4.6.1

Limit of LR(0)

LR Conflicts

A shift/reduce conflict is an error where a shift/reduce parser cannot tell whether to shift a token or perform a reduction.

A reduce/reduce conflict is an error where a shift/reduce parser cannot tell which of many reductions to perform.

A grammar whose handle-finding automaton contains a shift/reduce conflict or a reduce/reduce conflict is not LR(0).

LR Family

- LR Family
- covers wide range of grammars.
- SLR - simple LR parser
- LR - most general LR parser
- LALR - intermediate LR parser (look-head LR parser)
- SLR, LR and LALR work same (they used the same algorithm), only their parsing tables are different.

