Lecture 8: Bottom-up Analysis

Xiaoyuan Xie # 8% &
xxie(@whu.edu.cn
School of Computer Science E301

In A Nutshell

What is Bottom-Up Parsing?

* |dea: Apply productions in reverse to convert the
user's program to the start symbol.

« We can think of bottom-up parsing as the process
of "reducing" a string w to the start symbol of the
grammar. At each reduction step, a specific
substring matching the body of a production is
replaced by the nonterminal at the head of that
production.

« Keywords

* Reductions, handle, shift-reduce parsing, conflicts,
LR grammars

What is Bottom-Up Parsing?

* Four major directional, predictive bottom-up
parsing techniques:

— Directional: Scan the input from left-to-right.

— Predictive: Guess which production should be
iInverted.

— The largest class of grammars for which shift-
reduce parsers can be built, the LR grammars:
LR(0), SLR(0), LR(1), LALR(1)

A View of a Bottom-Up Parse

E-T

E-E+T
T — int
T — (E)

int + (int + int + int)
= T+ (int + int + int)
= E+ (int + int + int)
= E+ (T +int+int)
= E+ (E +int +int)
= E+(E + T +int)
= E+ (E +int)
>E+(E+T)

= E+ (E)

=>E+T

='E

int

+ =

int

+ |«

int

+ |-

int

A left-to-right, bottom-up parse is a rightmost
derivation traced in reverse.

A View of a Bottom-Up Parse

int + (int + int + int)
= T+ (int + int + int)
= E+ (int + int + int)
= E+ (T +int + int)
= E+ (E +int +int)
= E+(E + T +int)

= E+ (E +int)
>E+(E+T)
E+(E
z E:SI') Each step in this bottom-up parse is
S E called a reduction. We reduce a

substring of the sentential form back
to a nonterminal (start symbol).

Bl

E-E+T A View of a Bottom-Up Parse

int + (int + int + int)
(int + int + int)
(int + int + int)

T — int
} Rt d =1
= T '+

= E +
> E + (T
= E + (E
=E + (E
= E + (E
= E + (E
= E + (E)
E + T
=]

+

+ + + +

int + int)

int + int)

T + int)
int)
T)

int

int

int

int

int

Bl

E—-E+TA View of a Bottom-Up Parse

int + (int + int + int)
(int + int + int)
(int + int + int)

T — int
} Rt d =1
= T '+

= E +
> E + (T
= E + (E
=E + (E
= E + (E
= E + (E
= E + (E)
>E + T
=51

+

4
.l.
+
+

int + int)

int + int)

T + int)
int)
T)

int

int

int

int

int

Bl

E—-E+TA View of a Bottom-Up Parse

int + (int + int + int)
(int + int + int)
(int + int + int)

T — int
} Rt d =1
= T '+

= E +
> E + (T
= E + (E
=E + (E
= E + (E
= E + (E
= E + (E)
E + T
=]

+

+ + + +

int + int)

int + int)

T + int)
int)
T)

int

int

int

int

int

Bl

E - E +TA View of a Bottom-Up Parse
— int

T — (E)
R S A I o,
= T + (int + int + int)
= E + (int + int + int))
= E + (T + int + int)
= E + (E + int + int)
>E + (E + T + int)
= E + (E + int)
E + (E + T)
= E + (E)
z:E + T int

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse

T — int
T
= E '+
=E + (T
=B (B
= E + (E
= E + (E
= E + (E
= E + (E)
>E + T
5

(int + int + int)

+

+ + + +

int + int)
int + int)
T + int)
int)

T)

R R A

int

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse

T — int
T
= E +
=E + (T
=B (B
= E + (E
= E + (E
= E + (E
= E + (E)
>E + T
5

(int + int + int)

+

+ + + +

int + int)
int + int)
T + int)
int)

T)

R R A

int

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse

T — int

} Rt d =1

= E + (T + int + int)
= E + (E + int + int)
>E + (E + T + int)
> E + (E + int)

=E + (E + T)

= E + (E)

>E + T

=] o

int

int

int

int

Bl

E-E+TA View of a Bottom-Up Parse

T — int

T

= E + (T + int + int)
= E + (E + int + int)
>E + (E + T + int)
> E + (E + int)

=E + (E + T)

= E + (E)

>E + T

=] o

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse

(E + int + int)

T — int
T

= E +

>E + (E + T

= E + (E + int)
=>E + (E + T)
= E + (E)

>E + T

5

+ int)

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse

(E + int + int)

T — int
T

= E +

>E + (E + T

= E + (E + int)
=>E + (E + T)
= E + (E)

>E + T

5

+ int)

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse

T — int

} Rt d =1

>E + (E + T + int)
=3B e Tni)
>E + (E + T)
= E + (E)

>E + T

5

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse

T — int

} Rt d =1

>E + (E + T + int)
=3B e Tni)
>E + (E + T)
= E + (E)

>E + T

5

int

int

int

int

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

> E + (E + int) int
=E + (E + T)

= E + (E)

>E + T

5

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

> E + (E + int) int
=E + (E + T)

= E + (E)

>E + T

5

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

E + (E + T)
=E + (E)
=Bl T

=B

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

E + (E + T)
=E + (E)
=Bl T

=B

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

= E + (E)
>E + T
= E

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

= E + (E)
>E + T
= E

int| + ([int| + |int| + [int|)

E-T
E-E+TA View of a Bottom-Up Parse
T — int
T — (E)

>E + T
= E

int| + ([int| + |int| + [int|)

Bl

E - E +TA View of a Bottom-Up Parse
— int

T @ e

F | + T

>E + T
= E

int| + ([int| + |int| + [int|)

Bl

E - E +TA View of a Bottom-Up Parse
— int

et R

— 3 =

int| + ([int| + |int| + [int|)

Preliminaries

Basic Concepts

 How to build a predictive bottom-up parser?

« Sentential form
— For a grammar G with start symbol S

A string o is a sentential form of G if S =" «
e o may contain terminals and nonterminals
e Ifaisin T*, then a is a sentence of L(G)

— Left sentential form: A sentential form that occurs in
the leftmost derivation of some sentence

— Right sentential form: A sentential form that occurs in
the rightmost derivation of some sentence

Basic Concepts

« Example of the sentential form
—E>E*E|E+E|(E)]id
— Leftmost derivation:
E b B EdvE B rid i v esiididi B
d*"d+E*E=id*id+id*"E=id*id+id *id
* All the derived strings are of the left sentential form
— Rightmost derivation
E:=E+ E' = B+ ENESE +E Xl =B id ¥ id =
E*E+id*"d=E*id+id*id=id*id+id *id
* All the derived strings are of the right sentential form

A Small example

ES>E+T]

T>T*F|F
F>(E)|id

A Rightmost Derivation:
2 Euk |

2R EE

> E+T*id

> E+EFE*id

> E+id *id

> T +id*id

> FE+id*id

- id +id * id

The Parsing Problem

* Given a right sentential form, o, determine what
substring of a is the right-hand side (RHS) of
the rule in the grammar that must be reduced to
produce the previous sentential form in the right
derivation

 The correct RHS is called the handle

Basic Concepts

« Informally, a handle of a string is a substring that matches the
right side of a production rule.

— But not every substring matches the right side of a production
rule is handle

— Reduction of a handle represents one step along the reverse of
a rightmost derivation

Basic Concepts

* A handle of a right sentential form y (= afw) Is a
production rule A — 3 and a position of y where the string 3
may be found and replaced by A to produce the previous
right-sentential form in a rightmost derivation of y.

rm rm
S =" dAw =" affw

* Alternatively, a handle of a right-sentential form y is a
production A — 3 and a position of y where the string
may be found, such that replacing (3 at that position by A

produces the previous right-sentential form in a rightmost
derivation of y.

Basic Concepts

 Handle
— Given a rightmost derivation

o o N e, Y s S e S e A s S U e S 0
* v, for all i, are the right sentential forms
* Yk = AAW; Vg = apW
* From v, to v,.,, production A — 3 is used
— For convenience, we refer to the body 3
rather than A — 3 as a handle.

Basic Concepts

— Def: 3 is the handle of the right sentential
form

v = offw if and only if S =>"rm aAw =>rm o[Sw

i il Lety = afw be
7 il i R E+F*id
- E+T*id Whatis 3 ?

= F 4+ id What is w ?
What is o ? What is A?

Basic Concepts

— Def: B is a phrase of the right sentential form
y ifand only if S =>* y = a,Aa, =>+ aBo,

B Bkl Lety = a,Aa, be
2:E+F 5 E E+T
> E+T%id LetAbeT. Whatiso,? o,?

What can 3 be?

Basic Concepts

— Def: B i1s a simple phrase of the right sentential
formy ifand only if S =>* y = o,Aa, => o430,

=) it] Lety = a,Aa, be

>E+T*F E+T

S>E+T*id LetAbeT. Whatisa,? a,?
What can (3 be?

* The handle of any rightmost sentential form is its
leftmost simple phrase

Handles

* The handle of a parse tree T is the leftmost
complete cluster of leaf nodes.

* A left-to-right, bottom-up parser works by
iteratively searching for a handle, then
reducing the handle.

Basic Concepts

REDUCING PRODUCTION

RIGHT SENTENTIAL FORM HANDLE
idl * id_g idl
F *1d, F
T * id‘g id_g
T F T *xF

F—id
T— F
F—id
E->T x F

Figure 4.26: Handles during a parse of id; * id,

 Example

Basic Concepts

Sentential Form: T+ (E+T)*i

P:

(MHDE->T
2Q)E—->E+T
B T—->F
@HDT->T*F
5 F > (E)
6)F—>i
(7)F—>n

A derivation of this sentential form (not a rightmost derivation)
EDE+T=E+T*F=ET I =

E+F*i = E+(E)*i = EHE+T)*i

= THE+T)*i

Phrases: T +(E+T)*i, T, E+T, i, (E+T), (E+T)*i

Simple phrases: T, E+T, i

Handle: T

Given a sentential form, build a parsing tree, then it will be easy to identify a handle

Basic Concepts

lllustration via Parse Tree

X& Sentential form: leave nodes (from left to right)

prl T+ (E+T)*i

E
W >q)< Phrases: leave nodes of each subtree

l T * F *o *o o
\/ \ ! : T+ (E+D)*i, T, (E+T)*i. (E+T), E+T, i
K 1 ; :
X)(Simple phrase: leave nodes of all simple subtree

G e (i.e. a subtree with only one level of leaves)

)%J\ T E+TS i
E T

Handle: leave nodes of the leftmost simple subtree
T

Handle Pruning

A right-most derivation in reverse can be obtained by handle-
pruning.

00 PR € 30 Lt 015 8 IO e o 18 it 14 1
o= V2N e e Y > Y S (D\
Input string

Start from v,,, find a handle A.—f, in y,,, and replace 3, in by A, to
get Yn-1-

Then find a handle A, ,—p,_ Iny,.4, and replace B, in by A, , to
get Yn-2-

Repeat this, until reach the start nonterminal S.

Homework

Page 240, 4.5.1
Page 241, 4.5.3(a)

LR Parsing

The Parsing Problem

* Produce a parse tree starting at the leaves
* The order will be that of a rightmost derivation

* The most common bottom-up parsing algorithms are
in the LR family

L — Read the input left to right
R — Trace out a rightmost parse tree

Meaning of LR

* L: Process input from left to right

* R: Use rightmost derivation, but in reversed order

s oE B T R Bl e E T s i g
E*E+id*d=E*id+id*id=1id *id +id * id

E E E
R L Sl E + E
BN A e e S e VAR
L S S Eooti B2 ECS B EcE A

LR Parsers Use Shift-Reduce

» Shift-Reduce Algorithms

— Reduce: replace the handle on the top of the
parse stack with its corresponding LHS

— Shift: move the next token to the top of the parse
stack

LR Parsers Use Shift-Reduce

STACK INPUT ACTION

$ id; *xid, § shift

$id; ¥id2 $ reduce by F' — id
$F ¥id2$ reduce by T = F
$T +ido § shift

$T id, $ shift

$T + id» $ reduce by F' — id
$T x F $ reduce by T - T F
$T $ reduce by E— T

S E $ accept

Figure 4.28: Configurations of a shift-reduce parser on input id, *id,

Shift/Reduce/Accept/Error

50

A Shift-Reduce Parser

« E>E+T |T Right-Most Derivation of id+id*id
« TH>TF |F E—= E+T = E+T*F = E+T*id = E+F*id
- F>(E) | id = E+id*id = T+id*id = F+id*id = id+id*id

Right-Most Sentential Form Reducing Production
id+id*id F—id

id*i T—>F

E—->T

F—id

T—>F

F—oid

T—>T*F

E—> E+T

Handles are red and underlined in the right-sentential forms.

A Detail about Handles

E—-F
E—-E+ F
F-F* T
F-T
T — int
T = (E)

int| + |i1nt| * |int

A Detail about Handles

E—-F
E—-E+ F
F-F* T
F-T
T — int
T = (E)

int| + |(int| * |int

A Detail about Handles

E—-F
E—-E+ F
F-F* T
F-T
T — int
T = (E)

int| + |(int| * |int

A Detail about Handles

E—F
E—-E+ F
F-F* T
F-T
T — int
T = (E)

int| + |(int| * |int

A Detail about Handles

E—F
E—-E+ F
F-F* T
F-T
T — int
T — (E)

int| + |(int| * |int

A Detail about Handles

E—F
E—-E+ F
F-F* T
F-T
T — int
T = (E)

int| + |(int| * |int

A Detail about Handles

E—F
E—-E+ F
F-F* T
F-T
T — int
T — (E)

int| * |int

+ |

int

E—F
E—-E+ F
F-F* T
F-T
T — int
T — (E)

A Detail about Handles

This reduction
wasn't a handle!

el et R Sbhy

int

+ |

int

* |int

Bottom-up Parsing

» Traverse rightmost derivation backwards

— If reduction is done arbitrarily

« It may not reduce to the starting symbol
* Need backtracking

— If we follow the path of rightmost derivation

 All the reductions are guaranteed to be “correct”
« Guaranteed to lead to the starting symbol without
backtracking
— That is: If it is always possible to correctly find
the handle

Key: Finding Handles

* Where do we look for handles?
— Where in the string might the handle be?

 How do we search for possible handles?

— Once we know where to search, how do we identify
candidate handles?

 How do we recognize handles?
— Once we've found a candidate handle, how do we check that
it really is the handle?
— Use a stack to keep track of the viable prefix

— The prefix of the handle will always be at the top of the stack

Viable prefix

» |f a prefix of a right-sentential form:
—Z = ABb: Consider prefixes AB, ABb
—Z =" Acb: Consider prefixes A, Ac, Acb

€ Or strings with all

Prefix terminal symbols
O A
AN
LR St
g

right-sentential form

Viable prefix

* Viable prefixes are:

— Prefixes that do not contain simple phrases; or

— Prefixes containing one simple phrase that are at the end of this prefix ---
that is, this simple phrase is the handle.

A viable prefix does not contain any symbol after
a handle.

Viable prefix

Eg.

(1) Z — ABb Z = ABDb

2Q)A—> a Consider prefixes: AB, ABb

3)A—>b Viable prefixes are: AB(no simple phrase)

4)B—>d ABb (one simple phrase, which is at the end of the prefix)
G)B—oc¢

(6) B> bB

Z =+ abcb

Consider prefixes: a, ab, abc, abcb

Viable prefix: a (contain one simple phrase)
ab, abc, abcd are not viable prefix

Viable prefix

« Two types of viable prefix

— Nonreducible (for shift operation). no simple
phrase, need to shift more symbols to form the first
leftmost simple phrase (i.e. handle)

— Reducible (for reduction operation): contain one
simple phrase, at the end of the

8% i % ‘:Bb Z = ABD Viable prefixes:

3)A— b AB(no simple phrase) --- nonreducible
4)B—d ABD (contain a simple phrase) --- reducible
G)B—o>c

(6) B —> bB

Bottom-up Parsing

« Shift-reduce operations in bottom-up parsing
— Shift the input into the stack

» Wait for the current handle to complete or to appear
« Or wait for a handle that may complete later

— Reduce
* Once the handle is completely in the stack, then reduce

— The operations are determined by the parsing
table

Build the Automata

* LR(0) Item of a grammar G
— Is a production of G with a distinguished position

— Position is used to indicate how much of the handle
nas already been seen (in the stack)
* For production S —» a B S, items for it include
S>eaBS
S>aeBS
S>aBeS
S>aBSe

— Left of e are the parts of the handle that has already been seen
— When e reaches the end of the handle = reduction

« For production S — ¢, the single item is
S— e

Building the Automata

» Closure function Closure(l)
— | is a set of items for a grammar G
— Every itemin | is in Closure(l),

ifA—>oeBpisinClosure(l)and B —» yis a
production in G, then add B — e y to Closure(l)
« |f it is not already there

* Meaning
— When a is in the stack and B is expected next
— One of the B-production rules may be used to reduce the input to B
» May not be one-step reduction though

— Apply the rule until no more new items can be added

Building the Automata

— CLOSURE(IS)Example

IS = {S— eaAc}

Vr={a, b, c} CLOSURE(S) = {S— eaAc}

VN B {S, A, B}
S=S
P: IS = {S— aeAc}
A — ABb = {S— aeAc,
A — Ba A — eABb, A — eBa,

B—b B — ebj}
)

Building the Automata

» Goto function Goto(l,X)
— X Is a grammar symbol

» Let J denote the set constructed by this step
— All items in Closure(J) are in Goto(l, X)

— Meaning
* If | is the set of valid items for some viable prefix y

* Then goto(l, X) is the set of valid items for the viable prefix
X

Building the Automata

* Augmented grammar
— G is the grammar and S is the staring symbol

— 8onstruct G’ by adding production S’ — S into

« S’ is the new starting symbol
Eg: G S>a|lf = G:S->5S S—>alp

— Meaning

» The starting symbol may have several production rules
and may be used in other non-terminal’s production
rules

 Add S’ — S to force the starting symbol to have a single
production

« When S’ — S e is seen, it is clear that parsing is done

Building the Automata

« Complete process: Given a grammar G
— Step 1: augment G
— Step 2: initial state

« Construct the valid item set “I” of State 0 (the initial state)
* Add S’ > e Sinto |

— All expansions have to start from here

« Compute Closure(l) as the complete valid item set of state O
— All possible expansions S can lead into

— Step 3:
* From state I, for all grammar symbol X
Construct J = Goto(l, X)
Compute Closure(J)
» Create the new state with the corresponding Goto transition
— Only if the valid item set is non-empty and does not exist yet

— Repeat Step 3 till no new states can be derived

Building the Automata -- Example

e Grammar G:

S>> E
E>E+T|T
T—>id|(E)

— Step 1: Augment G
S»>S S—H>E E->E+T|T T->id|(E)
— Step 2:
» Construct Closure(l,) for State O
 Firstaddintoly;: S'—> e S
« Compute Closure(l,)
S —>eS
S—>eE
E—>eE+T
Eo>eT
T—>eid
T—>e(E)

Building the Automata -- Example

Iy:

Step 3 S s eSS uye R
_|1 E—>eE+T E-—>eT
- Add into I,: =S >Se e 10 e Siak:)
* No new items to be added to Closure (l,)
— 1,
« Add into |,: =S >Ee E>Ee+T
* No new items to be added to Closure (l,)
— |,
« Add into I;: =E—>Te
* No new items to be added to Closure (l;)
— |,
« Add into |: =T —>id e

* No new items to be added to Closure (l,)

Building the Automata -- Example

Iy:

2 Step3 S>>eS S—eE
_|5 Esorel Bt Tiia o5 eif
T °] T °
. Add into I =T 5 (eE) e g Tan

 Closure(l;)
Eo>eE+T E—>eT
T—o>eid T—oe(E)

— No possible moves from |,
& |6
* Add into I5: Goto(l,, +)=E > E +e T
 Closure(l;)
To>eid T—oe(E)
— No possible moves from |; and |,

Building the Automata -- Example

 Step 3
i) |7
« Add into I,;: Goto(ls, E) =
T—>(Ee) E—>Ee+T
* No new items to be added to Closure (l-)

— Goto(ls, T) = 15
~ Goto(ls, “(*) = Is

— No more moves from |5

— g
« Addinto Ig: Goto(l;, T)=E >E + T e
* No new items to be added to Closure (lg)

— Goto(lg, id) =1,
— Goto(lg, “(") = 15

Building the Automata -- Example

o Step 3
i |9
» Add into lg: Goto(l,, “)") =
T—>(E)e
* No new items to be added to Closure (lg)

— Goto(l,, +) = |4
— No possible moves from Ig and I

Building the Automata -- Example

S—>Se
L6
> Lisor ByB el
—Ee * T 5eid S"E—>E+Te
IO E—>Ee+T 0
S>> eS 8
S—>eE
E—>eE+T T (
EeT E—>Te
T—>eid id
T—>e(E)
T
(1d
T—>(eE)
E—o>eE+T E
E—>eT T >(E)e
IST—>0id (19
T—e(E)|

Reducible or Nonreducible

* LR(0) parser
— Shift item: A »>aeaf, acVy
— Reducible item: A —ae,
— Accepted item: Z — Se, (Z — S is from the augmented grammar)
— Shift status: include shift item
— Reducible state: include reducible item

— Conflict state:
» A state contains different reducible items: reduce-reduce conflict;
» A state contains both shift states and reducible items: shift-reduce conflict

Building the Automata — Example 2

° 0 > Z—>Se *

Vi S LIS, |
VN: {SaAa B} %
S=S S—)i:IOAc A S — aAec 4 S — aAce
P: NS SeA DR A — AeBb
{ S— aAc A — eBa B o eb

A — ABb B> eb \K‘

A — Ba

B > b lB e A —> ABsb
} A — Bea #)

b B—>be* A—> ABbe -
A>>Bae 7

Building the Automata — Example 3

7. — oS 0 i’l Z-—>Se "
Vr={a,b,c} S — eaAc
Vy = {S, A, B} -
ST S5 ashAc 2| S—>aAec —»| S aAce
P: A—s eABb A— AeBb
{ S—>aAc A—> eBa Broase st
A — ABb e B \
g:]:a B A—> ABeb
y A —> Beb Il
I} A—> ABbe

A—>Bbe *

Building the Automata — Example 4

Z —> oS S—) Z —> Se
S —seaAc
VT F {aa b’ C} a
VN: {Sa A} l
S.:S S —> aeAc A_) S—>aAec > S — aAce
P: A — eAbb A —> Aebb
{ S—aAc A—eb
A — Abb lb
A—>b l ;
A —> Abeb
} A — be lb

Building the Automata — Example 5

Zes |2 Z > Se
Vr={a,b, c} S >eadc
VN:{SDAaB} la
S=S
P S — a®Ac A_) S — aAec C_) Sk A
{ S— aAc A — ¢ABb A — AeBb B
A —> ABb A—> ea g_”::B —>| A ABeb
—> e
A—a la l,b
B - bB Yb
B—ob A—> a® B — beB A - ABbe
} —>| B — be
bl |B—ebB B
B— eb B— bBe

Stack

Input

Sm—1

Figure 4.35: Model of an LR parser

LR(0) algorithm

ai

L

$

\

LR

Parsing
Program

VAR

ACTION | GOTO ‘

Output

Building the Action Table

If state |, has item A — o ¢ a 3, and
— Goto(l;, a) = |,
— Next symbol in the input is a
Then Action[l;, a] = |;
— Meaning: Shift “a” to the stack and move to state |,
Need to wait for the handle to appear or to complete
If State |, has item A — o e
Then Action[S, b] = reduce using A - «
— Forall b in Follow(A)
— Meaning: The entire handle a is in the stack, need to reduce

— Need to wait to see Follow(A) to know that the handle is ready
Eg.S—>Ee E->Ee+T
Current input can be either Follow(S) or +

Building the Action Table

If state has S’ —> S, o
Then Action[S, $] = accept

Current state

— The action to be taken depends on the current state

 |In LL, it depends on the current non-terminal on the top of
the stack
 |n LR, non-terminal is not known till reduction is done

— Who is keeping track of current state?
— The stack

* Need to push the state also into the stack

« The stack includes the viable prefix and the corresponding
state for each symbol in the viable prefix

Building the Action Table

Action Table

action(S;,a) = S;, 1f there is an edge from §; to S;labeled as a
action(S;,c) = R, 1f S; 1s a reducible state, ce Vt U {#}
action(S;,#) = accept, if S;1s acceptance state

action(S;,a) = error, otherwise

erminal symbols
States

ap i

S

Building the Goto Table

» If Goto(l;, A) = |
 Then Goto[i, A] =]
* Meaning
— When a reduction X — o taken place
— The non-terminal X is added to the stack
replacing o
— What should the state be after adding X
— This information is kept in Goto table

Building the Goto Table

GOTO Table

goto (S;, A) = §;, if there is an edge from §; to S;labeled as A
goto (S;, A) = error, 1f there 1s no edge from §; to S;labeled as A

non-terminal Al
State

#

LR(0) Parsing algorithm

 Example ;
"2 s ’ll Z—>Se
S —»> eaAc
3 4

Vr={a,b,c} 3 S aeAc _A} S —> aAec —> S —> aAce
Vn={S, A, B} A—> eABb Ty
S=S A—> eBa B— eb
P: B— eb \K
{ (1) S—> aAc

b 8 «
(2)A — ABb ¥ b A —> ABeb
(3)A —> Ba SA—> Bea I}
(4B —>b 7 "B > be 9 A—> ABbe

§ 6A >Bae

LR(0) Parsing algorithm

action goto
a b C il S
0 |S2 1
1 accept
22 S7
3 S7 S4
4 | Rl R1 R1 R1
5 |S6
6 |R3 R3 R3 R3
7 | R4 R4 R4 R4
8 S9
9 |R2 R2 R2 R2

LR(0) Parsing algorithm
Algorithm 4.44: LR-parsing algorithm.
INPUT: An input string w and an LR-parsing table with functions ACTION and
GOTO for a grammar G.
OUTPUT: If w is in L(G), the reduction steps of a bottom-up parse for w;
otherwise, an error indication.
METHOD: Initially, the parser has sg on its stack, where sq is the initial state,

and w$ in the input buffer. The parser then executes the program in Fig. 4.36.
O

let a be the first symbol of w$;
while(1) { /* repeat forever */
let s be the state on top of the stack;
if (ACTION[s,a] = shift ¢) {
push t onto the stack;
let a be the next input symbol;
} else if (ACTION[s,a] = reduce A = 3) {
pop |3| symbols off the stack;
let state t now be on top of the stack;
push GOTO[t, A] onto the stack;
output the production A — f;
} else if (ACTION([s,a] = accept) break; /* parsing is done */
else call error-recovery routine;

LR(0) Parsing algorithm

P: (0)Z—S; (1) S— aAc; (2)A — ABb;

a | b ¢ | | (3)A—Ba;(4)B > b
action goto :
. b : 4 S| A Stack Input Actions
0| S2 1 0 abac# S2
1 accept 02 bac# S7
: 2 : 027 ach R4,Goto(2, B)=5
3 S7 S4
025 ac# S6
4 | RI R1 R1 R1
5| s6 0256 c# R3,Goto(2, A)=3
6| R3 | R3 |R3 [R3 023 CcH# S4
T aR4E 2 R CHORA | TR 0234 R1, Goto(0, S)=1
° = 01 Accept
91 R2 R2 R2 R2

Homework

Page 257, 4.6.1

Limit of LR(0)

LR Conflicts

A shift/reduce conflict is an error where a

shift/reduce parser cannot tell whether to shift a
token or perform a reduction.

A reduce/reduce conflict is an error where a

shift/reduce parser cannot tell which of many
reductions to perform.

A grammar whose handle-finding automaton

contains a shift/reduce conflict or a reduce/reduce
conflict is not LR(O).

LR Family

LR Family

covers wide range of grammars.

SLR - simple LR parser

LR — most general LR parser

LALR — intermediate LR parser (look-head LR parser)

SLR, LR and LALR work same (they used the same algorithm), only
their parsing tables are different.

(o

Unambiguous

LL(k)) LR(k) \
/ /LL(1)) |LR(1) \
/ LALR(1)

SLR(I)\

% s

[LL(0) J LR(0)

& = 7,

&

§\

o

Ambiguous

.

